
DEC-11-AJPB-D

PDP-11 BASIC

PROGRAMMING MANUAL

Single-User, Paper Tape Software

For additional copies, order No. DEC-11-AJPB-D from Digital Equipment

Corporation, Direct Mail, Bldg. 6A-3, Maynard, Mass. 01754 Price ~2.50

f

·.~

First Printing, September 1970
Second Printing, December 1970

Your attention is invited to the last two pages
of this document. The Reader's Comments page,
when filled in and returned, is beneficial to
both you and DEC; all comments received are
considered when documenting subsequent manuals,
and when assistance is requested, a knowledgable
DEC representative will contact you. The How To
Obtain Software Information page offers you a
means of keeping up-to-date with DEC's software.

Copyright @ 1970 by Digital Equipment Corporation

Supporting and referenced documents:

PDP-11 Handbook (order No. AJO)

PDP-11 Paper Tape Software Programming Handbook
(order No. DEC-11-GGPA-D)

These and other DEC documents may be ordered
from DEC, Direct Mail Bldg. 6A-3, Maynard,
Massachusetts 01754.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts 01754.

DEC
FLIP CHIP
DIGITAL
UNIBUS

ii

PDP
FOCAL
COMPUTER LAB
OMNIBUS

PREFACE

This manual contains a comprehensive description of PDP-11

BASIC1 . As implemented on the PDP-11, BASIC has a few limita­

tions offset by a number of special features which provide added

power and flexibility. Among the latter is a particularly strong

debugging capability.

For those who plan to learn BASIC from this manual, numerous

examples are provided to fully illustrate the use and operation

of each BASIC statement. The knowledgeable BASIC user can turn

to Appendix A for a summary of the differences from and exten­

sions to Dartmouth BASIC. Appendix B summarizes PDP-11 BASIC's

command structure, and Appendix D gives loading instructions.

A knowledge of computers is not prerequisite to the efficient

use of BASIC. However, a knowledge of binary notation is required

to load the BASIC program into the PDP-11 (see Chapter 7).

PDP-11 BASIC can be used in a minimal PDP-11 system: 4K
2 words of core memory and a Teletype.

For a more elementary description of the BASIC language,

see BASIC Programming, by Kemeny & Kurtz, published by John Wiley

& Sons, Inc., New York.

1BASIC is a trademark registered by the Trustees of Dartmouth
College, New Hampshire.

2Teletype is a registered trademark of the Teletype Corporation.

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION TO THE MANUAL AND BASIC OPERATIONS

1.1

1.2

l. 2.1

l. 2. 2

1.3

1.4

1.5

1.6

1.7

Loading Data

The BASIC Language

Documentation Conventions

Deferred and Immediate Modes

Keyboard Error Correction

Program Editing

Error Messages

Special Functions

Special Features of PDP-11 BASIC

CHAPTER 2. BASIC VOCABULARY AND SYNTAX

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

Lines

REMARK Statement, REM

STOP and END Statements

RUN Command

Data Input

Constants

Variables

Expressions

Evaluation of Expressions

Arithmetic Functions

CHAPTER 3. COMPUTATIONAL, DATA INPUT AND OUTPUT, AND LOGICAL
STATEMENTS

3.1 LET Statement

3.2 PRINT Statement

3.3 Formatting Printout

3.4 Character Strings and Expressions in
PRINT Statements

3.5 FOR and NEXT Statements

3.5.1 Use of STEP

3.5.2 Control Variable Value

3.5.3 Nested FOR Statements

3.6 READ and DATA Statements

3.7 RESTORE Statement

iv

1-1

1-1

1-1

1-2

1-2

1-3

1-3

1-4

1-4

2-1

2-2

2-3

2-3

2-4

2-4

2-5

2-5

2-5

2-7

3-1

3-1

3-2

3-3

3-5

3-6

3-7

3-7

3-8

3-.LO

CHAPTER

TABLE OF CONTENTS (Cont'd)

3.8 The INPUT Statement

3.9 The GOSUB and RETURN Statements

3.9.1 Nested Subroutines

3.10 Unconditional Program Branches - GOTO

3.11 Conditional Program Branches - IF

3.12 Subscripted Variables

3.12.1 The DIMension Statement

3.12.2 Generating Arrays

3.12.3 Two-Dimensional Arrays

4. MATHEMATICAL FUNCTIONS

4.1 Introduction

4.2 Usage

4.2.1 SIN (X) and COS(X)

4.2.2 ATN(X)

4.2.3 SQR(X)

4.2.4 EXP(X)

4.2.5 LOG(X)

4.2.6 ABS (X)

4.2.7 Integer Function, INT (x)

4.2.8 Random Number Function, RND (x)

4.2.9 RANDOMIZE Statement

4.2.10 Sign Function, SGN(x)

4.3 User-Defined Functions

4.4 Multiple Definitions

CHAPTER 5. BASIC COMMANDS

5.1 LIST

5.2 DELETE

5.3 SAVE

5.4 OLD

5.5 Stopping a Run, CTRL/P

5.6 RUN

5.7 Commands In User Programs

v

3-11

3-12

3-13

3-14

3-15

3-18

3-19

3-19

3-21

4-1

4-2

4-2

4-3

4-4

4-4

4-5

4-6

4-6

4-8

4-9

4-10

4-11

4-13

5-l

5-l

5-2

5-2

5-3

5-3

5-3

~

-

•.

r-',

~­
/

TABLE OF CONTENTS (Cont'd)

CHAPTER 6. ERROR MESSAGES

6.1 Format

6.1.1 Fatal Errors

6 .1. 2 Non-Fatal Errors

CHAPTER 7. LOADING AND STARTING BASIC

7.1 Initial Dialogue

7.2 Long Form of Dialogue

7.3 Restarting BASIC

7.4 Loading the EXF Program

CHAPTER 8. USING ASSEMBLY LANGUAGE PROGRAMS WITH BASIC

8.1 Description

8 .1.1 Format of Function Call

8 .1. 2 Evaluation

8 .1. 3 Recursive EXF Calls

8.2 Requirements for the External Routine

8.3 Using BASIC's Internal Routines From EXF

8.3.1 EVAL

CHAPTER 9. DEMONSTRATIONS PROGRAMS

APPENDICES

A. Implementation Notes

B. Statements, Commands, Functions

c. ASCII Character Set

D. The Bootstrap and Absolute Loaders

E. Operating the Teletype and High-Speed Paper

Tape Reader and Punch Units

vi

6-l

6-l

6-2

7-l

7-2

7-2

7-2

8-l

8-l

8-2

8-3

8-3

8-5

8-5

A-1

B-1

C-1

D-1

E-1

TABLES

FIGURES

2-l

3-1

8-1

2-1

3-1

D-1

D-2

E-1

E-2

E-3

TABLE OF CONTENTS (Cont'd)

Arithmetic Operators

Logical Operators

Usage Data for BASIC Functions

A BASIC Program with Results

Nested Subroutine Call

Loading and Verifying the Bootstrap Loader

Loading BASIC Into Core

ASR33 Teletype Console

ASR33 Teletype Keyboard

High-Speed Paper Tape Reader and Punch

vii

2-6

3-16

8-7

2-2

3-14

D-2

D-3

E-1

E-2

E-4

--------------------------------- ~------- ------

CHAPTER l

INTRODUCTION TO THE MANUAL AND BASIC OPERATIONS

l.l LOADIN\, DATA

PDP-ll BASIC is an on-line, conversational program for use

from the Teletype (terminal) keyboard, in a paper tape environ­

ment. It can be run in the minimal 4K configuration. Any addi­

tional core storage can be utilized for user program storage. If

BASIC is not in core, directions for loading and responding to

its initial dialogue can be found in Chapter 7.

After the initial dialogue has been completed, BASIC prints

READY

to indicate that it is in command mode. At this point the user

can begin to type in his program.

After performing user services, such as printing data on

the terminal printer or punching out or reading in user programs

on paper tape, BASIC returns automatically to command mode.

1.2 THE BASIC LANGUAGE

BASIC statements are explained, beginning in Chapter 2, along

with the rules of BASIC syntax. Throughout the text, simple

examples have been used in an effort to illustrate clearly the

operation of each statement. A number of useful sample programs

are furnished in Chapter 9 and have been annotated to explain

program logic and the working of certain BASIC statements.

1.2.1 Documentation Conventions

Certain conventions are used throughout the manual in clarifying

examples of BASIC syntax.

a. Angle brackets indicate essential elements
of the statement or command being described:

LET <variable> <expression>

b. Square brackets indicate a choice among two
or more possibilities:

[
THEN

IF <formula> THEN
GOTO

<statement>]
<line number>
<line number>

1-l

c. Braces indicate optional matter or a choice
among optional elements:

PRINT {list}

Items in lower case print, such as list under item c, above,

are supplied by the user, according to rules explained in the

text. Items in capitals, such as THEN and GOTO under b, above,

must appear exactly as shown.

d. User input (from the keyboard) to a running
program is underlined whereas program print­
out is not underlined.

1.2.2 Deferred and Immediate Modes

BASIC programs are most frequently written in deferred mode, that is,

with a number preceding each line to indicate its sequence in the pro­

gram. In this mode, statement execution is deferred until a specific

command (e.g., RUN or GOTO) is typed. In deferred mode the program is

stored in core memory where it can be edited, debugged, run, rerun, and,

if desired, saved on paper tape for future use.

One of the special features of PDP-11 BASIC is that certain

statements can be typed without the usual preceding line number.

Without a line number, the statement is executed when the RETURN

key is typed at the end of the line. The result of the computa­

tion is stored for subsequent use, but the statement by which

the result was obtained is lost.

This mode of operation is referred to as immediate, and

is useful when BASIC is to serve as a quick calculator. Imme­

diate mode is especially useful in debugging deferred (stored)

programs. It can be used, for example, to duplicate and test

certain computational statements, and to print the value of

variables at various stages of program execution.

1.3 KEYBOARD ERROR CORRECTION

Since the keyboard is used for input, typing errors may occur. To ex­

punge unwanted characters from a line being typed, press the RUBOUT

key once for each previous character to be deleted. To replace the en­

tire line being typed, type CTRL/U (i.e., hold down the CTRL key while

typing the U key; the slash in CTRL/U is shown merely to tie the opera­

tions together) then begin again. Input lines are terminated with the

RETURN key. If the RETURN key is typed before a typing error is dis­

covered, the line must be edited as described in Section 1.4 below.

1-2

~
\

1.4 PROGRAM EDITING

Programs being created from the keyboard, or those which have

been written previously and read in from paper tape, can be edited

in line-oriented fashion.

To change or correct a line, simply retype its line number

and then the desired statement. For example, the line

LJ0 PRINT A

can be replaced by typing

LJ0 GOTO 20C

The PRINT statement would no longer exist; its place would be

occupied by the GOTO statement.

To delete a line, type the line number followed by the RETURN

key

10 <RETURN key>

or use the DELETE command. For example,

DELETE 10

will delete line number 1~.

DELETE 5, LJ0

will delete lines 5 through 4~.

DELE 1 E 1 , 8 1 9 1

will delete the entire user program.

1.5 ERROR MESSAGES

As user programs are typed in and executed, an error message may

appear on the teleprinter as the result of a typing error, badly

formatted or missing statement, etc. The message will appear

as follows:

1-3

ERROR xxx AT LINE yyy

where xxx represents an error code and yyy represents the line number

of the line containing the error. All error codes are explained in

Chapter 6.

1.6 SPECIAL FUNCTIONS

BASIC contains a number of special functions which perform specific

mathematical operations. It is not necessary, for example, to create

an original program to find the cosine of a given angle. The BASIC

mathematical function COS followed by a parenthesized argument (angle)

will compute this value automatically for the given angle. BASIC's

mathematical functions are described in Chapter 4.

1.7 SPECIAL FEATURES OF PDP-11 BASIC

PDP-11 BASIC has a number of added features, as compared with standard

Dartmouth BASIC, which make it simpler to use and which are especially

helpful in debugging user programs. These features are noted through­

out the text and listed along with BASIC's limitations in Appendix A.

1-4

. ------'

CHAPTER 2

BASIC VOCABULARY AND SYNTAX

Figure 2-1 (on next page) will serve to illustrate some BASIC

fundamentals. The program (lines numbered 1~ through 2~~ in

Figure 2-1) is a typical BASIC program. The REMARK statement

in the first line (line 1~) and the printed results (following

the command RUN) indicate that the program computes and prints

interest payments.

2.1 LINES

Each line of the program begins with a number and is terminated

with the RETURN key which is non-printing. The line number must

be an integer from 1 to 8191. Statements are executed in the

ascending order of their line numbers regardless of the sequence

in which they appear. To allow later insertion of new lines, it

is advisable to number lines by fives or tens.

Notice in Figure 2-1 that each line number is followed by a

word indicating what BASIC is to do or how it is to handle the

data that follows the word. There are various types of BASIC state­

ments, each is identified by the word which introduces the statement

(LET, FOR, IF, DEF, etc.).

All BASIC statements and computations must be written on a

single line; they cannot be continued onto a following line.

However, more than one statement may be written on a single line

when each statement after the first is preceded by a colon.

(Multiple statement lines are a special feature of PDP-11 BASIC.) For

example:

10 INPUT A,B,C

is a single statement line, whereas

20 LET X=11: PRINT x,y,z: IF X=A THEN 10

is a multiple statement line containing three statements: LET, PRINT,

and IF. Most statements may be used anywhere in a multiple state­

ment line; exceptions are noted in the discussion of each statement.

2-1

10 REMARK -- PROGRAM TO COMPUTE INTEFEST PAYMENTS
20 PFINT "INTEREST IN PERCE,'JT";: INPUT J
26 LET J = J/100
30 PRINT "AMOUNT OF LOP•c'J";: INPUT A
LJ0 PFINT "NUMBER OF YEARS";: I.'JPU1 r'J
50 PRii'JT "NUMBER OF PAYMENTS PER YEAR";: I.'JPUT M
60 LE 1 l\J
65 LE 1 I
70 LET B
75 LE1 R
78 PRINT

1 +I
A* I I C 1- 1/ B L'J)

80 PRINT "AMOlJ,'JT PER PAYMENT
85 PRil\J1 "TOTAL INTEREST
88 PRINT
90 LET B= A

= "; R
- ,,.
- '

95 PRINT " INTEREST
100 LET L B* I

APP TO PRir'J

110 LET P = R-L
120 LET B = B-P
130 PRINT L, p, B
140 IF B>=R GOTO 100
150 PRINT B*I' R-B*I
160 PRI ~'JT "LP ST PAYMENT
200 END

RUN
INTEREST IN PERCENT? 9
AMOUNT OF LOAN? 2500
NUMBEF: OF YEARS? 2

B* I+B

NUMBER OF PAYMENTS PER YEAR? 4

AMOU'JT PER PAYMENT
TOTAL INTEREST

344-9615
259·6921

Il\JTEFiEST
56·25
49.7 5399
LJ3o11182
36-3202
29·37577
22·2751
15·01465
7·5908LJ7

APP TO PRIN
28 8. 7 1 1 5
295-2075
301-8LJ97
308-6413
315·5857
322-6864
329-9469
337·3707
344·9618

BALANCE

LAST PAYME,'JT

STOP AT LINE 200
READY

2 21 1 • 28 8
1916.081
1614-231
1305·59
990-0043
667·3178
337·371

BALPNCE"

Figure 2-1. A BASIC Program with Results

2.2 REMARK STATEMENT, REM

The REMARK statement is used to insert notes and comments in user pro­

grams. Any legal character (see Appendix C) may appear in a REMARK

statement. The word REMARK can be abbreviated to REM.

2-2

·------ --·------

r-·-

It is often useful to put the name of the program and informa-

tion on what it does in a REM statement at the beginning. Remarks

throughout the body of a long program will help later debugging by

explaining the functions of various sections of the program.

REM statements have no effect on the running of the program.

They do, however, take up storage space which can be critical in

small memory configurations.

When used in a multiple statement line, the REM statement

must be last since BASIC ignores everything on a line after REM.

2.3 STOP AND END STATEMENTS

The program in Figure 2-1 concludes with an END statement. The

END statement should be included in programs intended for long

term use. It assures that they can be executed in other than

the single user BASIC environment.

The END statement must be placed at the end of the program,

i.e., it must have the highest line number of any program state­

ment.

STOP statements can be used anywhere in a program to terminate

program execution; they mark the logical places for program termina­

tion rather than the physical end of the program.

A program intended only for temporary use can be written

without an END or STOP statement as a terminator; it will termi­

nate normally at the highest numbered line.

STOP is useful in debugging user programs. It can be placed

at critical points in the program so that during execution the

program will halt at these points. At the halt, PRINT can be used

in immediate mode to examine the value of specific variables. If

program execution appears correct at that point, execution may be

continued with an immediate mode branch to the statement following

STOP (see GOTO, Section 3.10), or the STOP statement may be deleted

and the program restarted using RUN.

2 • 4 RUN COMMAND

When the user program has been typed in deferred mode, as in

Figure 2-1, it is ready for execution with the RUN command.

2-3

When the RUN command is issued, BASIC executes the program.

If a fatal error is detected, execution is halted and an error

message is printed. If an error is non-fatal, an error message

is printed and program execution is continued.

2.5 DATA INPUT

Following the RUN command in Figure 2-1 (after line 200) four

questions appear followed by question marks. The questions re­

sult from the PRINT statements at lines 20, 30, 40 and 50. The

question marks result from the INPUT statements at the end of

these multiple statement lines.

The numbers appearing after the questions (underlined for

documentation purposes) were typed by the user. How to input

to and output from a running user program is described in Chap­

ter 3.

2.5.1 Constants

BASIC accepts constants expressed as integers, decimal numbers,

or in exponential format, i.e., a decimal number times some

power of ten, such as 23.4E2 which is equivalent to 2340. The

E can be read as "times ten to the _th power", where the power

is specified by the number following the E.

The following rules apply to numbers in exponential format.

1. The exponent may be unsigned if positive
(1234.56E 3). A negative exponent must
be signed, e.g., 1234.56E-3.

2. The exponent must be in the range -98~~
to +98~~-

Results of computations are printed out as integer or deci­

mal numbers when the result will fit in nine spaces, i.e., seven

digits plus a sign (space when positive) and a decimal point.

Outside this range they are printed out in exponential or E

format in a maximum of fifteen characters, i.e., sign (if nega­

tive) or space, decimal point plus seven significant digits,

E symbol, sign or space, and exponent of up to four digits.

Shown below are some user-supplied values with their equivalents

as printed out by BASIC.

2-4

----- ~---------

Value Typed In

.,01
9.9,0,0,0,0,0E-3
9999999
1.,0,0,0,0,0,0E6
2.718281828459,045
.,0,0,0,0,0,0,0,0,036218

2.5.2 Variables

Value Printed by BASIC

.,01

.,0,099
9999999
1,0,0,0,0,0,0
2. 718282
.36218E-9

A variable is a symbol which represents a number. It is formed

by a single letter or a letter followed by a single digit. For

example:

I B3 X C8

Variables are used in the program where actual values are

not known when writing the program and where certain values are

expected to change.

2.5.3 Expressions

Expression, when referred to throughout the manual, implies a

constant, a variable, or combination of either or both separated

by arithmetic operators and parenthesized, if necessary. Example:

A+B-4/C*l.2+7/(l+A)

Table 2-1 below lists the symbols used to indicate arithme­

tic operations in BASIC expressions. Section 2.5.4 explains the

rules under which BASIC expressions are evaluated.

2.5.4 Evaluation of Expressions

In evaluating expressions, BASIC performs arithmetic operations

in the order of priority indicated in Table 2-1. Parenthesized

portions of expressions are evaluated first. Nested parenthe­

sized groups are evaluated beginning with the innermost grouping,

working outward.

2-5

---·~-------- ~------

TABLE 2-1

Arithmetic Operators

Symbol in Algebraic
BASIC Example Notation

t (SHIFT/N) AtB AB

* A*B AB

I A/B A
B

+ A+B A+B

A-B A-B

Prior-
ity Function

1. Exponentiation
(fft:ise A t<! the
B power)

2.

3.

Multiplication

{ Division

Addition

{ Subtraction

1A must be positive and non-zero. See Appendix A, Section 7.

Through the use of parentheses the order of priority of

arithmetic operations, and the final value of an expression,

can be changed.

This can be shown b~ evaluating the following expressions,

which are alike except for the inclusion of parentheses in the

second:

1) A *Bt 2+C/2

2) A*((Bt2+C)/2)

Letting A=7, B=2, and C=4 we get:

1) 7* 2t 2+4/2

Evaluating according to BASIC's rules we get, in successive steps:

then 7*4+4/2

28 + 2

3fJ

and finally

The second expression yields:

2) 7*((2+2+4)/2)

7*((4+4)/2)

7*(8/2)

28

then

then

and finally

2-6

2.5.5 Arithmetic Functions

In addition to constants and variables, the call names of BASIC

arithmetic functions- SIN(X), COS(X), LOG(X), etc., as described

in Chapter 4, can be used as expressions or elements of expres­

sions. The external function EXF(X), as described in Chapter 8, may

also be used in this manner.

2-7

----------- -

CHAPTER 3

COMPUTATIONAL, DATA INPUT AND OUTPUT, AND LOGICAL STATEMENTS

3.1 LET STATEMENT

The LET statement is used to assign a value to a variable. The

general format of the LET statement is:

LET <variable> <expression>

The following four statements illustrate two forms of the LET

statement.

10 LET A= 1
20 LET B=2
30 LET C=A+1
LJ0 LET X=A+B+C+l

When these statements are executed, the value of X at line 40 will be

1+2+2+1 or 6.

The LET statement can be used anywhere in a multiple state­

ment line.

3.2 PRINT STATEMENT

The PRINT statement is used to output (print) data on the tele­

printer. The general format of the PRINT statement is:

PRINT {list}

where the list may consist of an expression, a text string, or

both. As the braces indicate, the list is optional.

The PRINT statement alone:

20 PRil\IT

may be used to roll the teleprinter platen, inserting a blank line

in the program printout.

PRINT statements can be used to perform calculations: by

evaluating the expression contained in the list and printing

out its constant value. The value resulting from the computa-

3-1

--------------------------------------- -----·------

tion is printed out but not retained for use in subsequent state­

ments. The preceding example (Section 3.1) could have been written

as follows, substituting a PRINT statement for the final LET state­

ment to obtain printed results:

10 LET A=l
20 LET 8=2
30 LET C=A+l
40 PRINT A+B+C+l
RUN

6

STOP AT LINE 40
READY

The PRINT statement may be used anywhere in a multiple state­

ment line.

3.3 FORMATTING PRINTOUT

By placing a comma after the expression in the PRINT statement,

subsequent values will be printed on a single line, as the fol­

lowing example demonstrates.

10 LET A=5
20 FOR B=1 TO 5
30 PRINT A+B,
40 NEXT B

RUN
6 7

STOP AT LINE 40
~Am

8 9

BASIC formats the Teletype print spaces into five print

zones of 14 spaces each. When an item in a PRINT statement is

followed by a comma, the next value to be printed will appear

in the next available print zone.

10

If the PRINT statement contains several items (e.g., constants

and variables), inclusion of an extra comma between two items causes

a print zone to be skipped. For example:

30 LET A=l: LET 8=2: LET C=3
40 PRINT A,,B,C,l·4
RUN

1

STOP AT LINE 40
~Am

3-2

2 3

If the last item in a PRINT statement is followed by a

comma, the next value to be printed will appear in the next

available print zone, even though it is in a separate PRINT

statement. For example:

10 LET A=1: LET B=2: LET C= 3
20 PRINT A~
30 PRINT B
40 PRINT c
RUN

1 2
3

STOP AT LINE 40
READY

If a tighter grouping of printed values is desired, the

semicolon can be used in the same manner as the comma. It will

cause each value to be printed two spaces to the right of the

preceding printout. A semicolon following the last item

in the list will cause the next printed value to appear

two spaces to the right of the preceding value on the same

print line (provided the end of the print line has not been

reached) • The following example shows various uses of the semi­

colon and the comma.

10 DATA 1 ~ 2~ 3
20 READ A~a~c
30 PRINT A; a; c;

40 PRINT A; a; c
50 PRINT A~ a~ c
60 PRINT A~; a~ c
RUN

1 2 3 2 3
2 3
2 3

STOP AT LINE 60
READY

3.4 CHARACTER STRINGS AND EXPRESSIONS IN PRINT STATEMENTS

The PRINT statement may be used to print a message, comment, or

any string of characters. This is done by delimiting the characters

to be printed with quotation marks. For example:

10 PRINT "THIS IS A TEXT STRING"
RUN
THIS IS A TEXT STRING

STOP AT LINE 10
READY

3-3

A single PRINT statement can be used to print character

strings and computed values. For example:

40 PRINT "AVERAGE GRADE IS " X

would cause BASIC to print the following (where X=83.4):

AVERAGE GRADE IS 83·4

When a character string is printed, only the characters be­

tween quotes appear; no leading or trailing spaces are added.

Leading and trailing spaces may be added within the quotation

marks using the keyboard space bar. They will appear in the

printout.

When a comma is separating a text string and a following

PRINT list item, the following item is printed beginning at the

next available print zone. Semicolons separating text strings

and other items are ignored. However, a semicolon appearing as

the last item of a PRINT list will always suppress the line feed/

carriage return. In the following example the 2 printed in line

30 immediately follows the "Z" text string in line 20. The space

separating the Z and the 2 is the sign space; if X equalled minus

two, the minus sign would appear between the Z and 2 without a

space.

10 LET X=2
20 PRINT "GRADE","40";;;"z";
30 PRINT X
RUN
GRADE 40Z 2

STOP AT LINE 30
READY

Any algebraic expression in a PRINT statement will be evalu­

ated with the current values of the variables and the result will

be printed. For example:

5 LET A= 7 8 • 8 6
10 PRINT "THE RESULT IS" 40*10+23.82-A
RUN
THE RESULT IS 344·96

STOP AT LINE 10
READY

The above demonstrates the omission of the format control charac­

ters following a text string, as well as the ability of the PRINT

statement to print text and perform calculations.

3-4

3.5 FOR AND NEXT STATEMENTS

The FOR and NEXT statements are used to mark the beginning and

ending points of program loops. Any statements between the FOR

statement and its corresponding NEXT statement will be executed

repeatedly according to conditions supplied within the FOR state­

ment.

The general format of the FOR statement is:

FOR<variable>=<expression>TO<expression>{STEP<expression>}

The general format of the NEXT statement is:

NEXT<variable>

The variable following FOR in ·::he FOR statement is referred

to as the "control variable". The same variable must appear in

the NEXT statement which defines the end of the loop.

The upper and lower values represented by the expressions

preceding and following TO in the FOR statement are referred to

as the "range" of the control variable. Each value within the

range is computed and assigned to the control variable for one

iteration of the loop.

The following example illustrates the FOR-NEXT statement

and the formation of a program loop.

10 LET A= 5
20 FOR B= 1 TO 5
30 PRINT A+B
40 NEXT B

50 <next statement>

In line 20 the variable B is assigned the values 1, 2, 3, 4,

and 5. Since it cannot have each of these values simultaneously,

a loop is formed beginning with the FOR statement at line 20 and

ending with the NEXT statement at line 40. The statements within

the loop are re-executed five times, each time with a new value

of B. The NEXT statement causes repeated jumps to line 20 until

B reaches its final assigned value of 5. When these statements are

executed, BASIC prints the values 6, 7, 8, 9, and 10. When B

reaches its ultimate value of 5, control passes to whatever statement

may follow line 40.

3-5

Each FOR statement within a program must be succeeded by a

NEXT statement; NEXT cannot be used without a preceding FOR state­

ment.

3.5.1 Use of STEP

In the preceding example, line 2~ could have been written

20 FOR B=l TO 5 STEP 1

The STEP modifier is optional when the step value desired is

+1. It is required when the step value desired is other than +1, for

example:

10 FOR A=1 TO 8 STEP 2
20 PRINT A
30 NEXT A
40 <next statement>

When these statements are executed BASIC prints the initial value

of l, then adds 2 to arrive at the next value, etc. It will

print out 1, 3, 5, and 7, then program control will revert to

line 4~, the next statement outside of the loop.

A negative step value is legal:

10 LET A=5
20 FOR M=A TO 1 STEP -1
30 PRINT M
40 l\JEX1 M

When executed these statements will print the values 5, 4,

3, 2, and 1.

For positive step values, the loop is executed as long as

the control variable is less than or equal to its final value.

For negative step values the loop continues as long as the con­

trol variable is greater than or equal to its final value.

If the initial value is greater than the final value and

a positive step is indicated, or if the initial value is less

than the final value and a negative step value is indicated, the

body of the loop is not executed.

3-6

The FOR and NEXT statements can be written in a multiple state­

ment line, provided: FOR is the first statement on its line, and

NEXT is the last statement on its line.

3.5.2 Control Variable Value

The initial and final values of the control variable are computed

only once - upon initial entry to the FOR loop. The control vari­

able value can be modified within the loop.

Upon exit from the loop, the control variable retains the last

value used within the loop, as shown in the following program.

5 REM - TEST FOR CONTROL VARIABLE VALUE
6 REM - AT EXIT FROM "FOR" LOOP

10 FOR A=1 TO 8 STEP 2
20 PRINT A;
30 NEXT A
33 REM - NEXT STATEMENT IS OUTS! DE THE LOOP·
3L.J REM - IT PRINTS FINAL COMPUTED VALUE OF
35 REM - CONTROL VARIABLE "A"•
L.J0 PRINT : PRINT A

RUN
1 3 5 7
7

STOP AT LINE L.J0
REAVY

When the variable is tested with the PRINT statement at

line 40, outside of the loop, it is found to have a value of 7.

The program above stopped at line 40, as is indicated by the

message STOP AT LINE 4~.

3.5.3 Nested FOR Statements

FOR statements can be nested to allow the programming of loops within

loops, as shown below.

10 FOR A= 1
20 FOR B=2
30 LET X=A
L.J0 NEXT B
50 NEXT A
55 PRINT X

RUN
15

TO
TO
+

STOP AT LINE
READY

5
10 STEP 2

B

55

3-7

---------------------------------~~ ~~--~---~--

Lines 20 to 40 are executed 25 times -- five times for each

value of A in line 10.

Correct nesting of FOR loops is diagrammed below.

FOR outer loop

FOR ~nested loop

NEXT}
NEXT ____ __.

All statements of a nested loop are executed after the FOR

statement of the outer loop and before the NEXT statement of the

outer loop is encountered.

Additional levels of nesting are possible. However, deep

nesting is costly in terms of working storage (see Appendix A

for specific data on storage requirements). For a practical

example of nested loops, see Section 3.12.3.

3.6 DATA and READ Statements

In previous examples, LET statements have been used to assign

constant values to single variables; if more variables were needed,

more LET statements were included. However, in programs requir­

ing many variables and constant values, READ and DATA statements

should be used.

The DATA statement introduces a numeric constant, or a series

of constants, into a program. READ associates variable names se­

quentially with the constant values supplied by DATA statements.

READ and DATA statements must accompany one another in user pro­

grams, but they need not be paired. If nine variables appear in one

or more READ statements, there must be at least nine constants in one

or more DATA statements (see Section 3.7 for the exception).

3-8

In the following example, all data is introduced in a single
DATA statement. It is used at separate points in the program by
two READ statements.

10 DATA 1~5~3~7~9
20 READ A~ B
30 LET X = A+B
LJ0 PRINT A~B~X
50 READ V~Q~R
60 LET X = X+V+Q+R
70 PRINT
80 PRINT x~v~Q~R

RUN
1 5 6

25 3 7 9

STOP AT LINE 80
READY

In executing the above program BASIC ignores the DATA state­

ment until it encounters a READ statement. It then goes back to

the lowest numbered statement line of the program to search for

a DATA statement. Above, it finds one at line 10, the first line

of the program.

Taking constant values sequentially, it associates them with

variables in the READ statement, also taken sequentially: A is

assigned a value of 1, and B of 5. Establishing a pointer at

the next data element, 3, it reverts to line 3~, the next unexecu­

ted statement.

In line 30 a new variable, X, is introduced with a LET state­

ment and given a computed value of 6.

At line 50 another READ statement is encountered containing

three new variables. This time BASIC does not search for the

DATA statement but refers to its pointer to obtain the next unused

data element. Variables V, Q, and R are assigned the constant values

3, 7, and 9.

In line 60 a computation is performed and in line 70 the

latest computed value of X and the assigned values of V, Q,

and R are printed.

(Note that X in line 60 retains its computed value from

line 30. Line 60 is evaluated as X=6+3+7+9.)

3-9

Several error messages are associated with DATA and READ

statements; see error codes 19, 20, 21, and 123 in Chapter 6.

With regard to 123, each variable in a program must be in a

READ statement, in a LET statement to the left of the = symbol,

or in a FOR statement prior to use in an expression or PRINT

list.

The DATA statement cannot be included in a multiple state­

ment line; it must be the only statement on a numbered line.

The READ statement may be placed anywhere on a multiple state­

ment line.

3.7 RESTORE STATEMENT

The RESTORE statement makes it possible to recycle through DATA

statements beginning with the lowest numbered DATA statement in

a program. For example~

LJ0 DATA 1 ~ 2
50 READ A~B
60 PRINT A~ B
70 RESTORE
80 READ C~D

90 PRINT c~ D
RUN

1 2
2

STOP AT LINE 90
READY

The RESTORE statement at line 70 allows the READ statement at

line 80 to obtain values from the DATA statement, even though the

same values were used previously in the READ statement at line

50. Without the RESTORE statement an error message, indicating

lack of data for the READ statement, would have occurred at

line 80.

In the following program, the RESTORE statement causes the

second READ statement, at line 60, to take constant values from

the first DATA statement, at line 10, rather than from the second,

at line 50.

3-10

10 DATA 1 ~ 2
20 READ A~B
30 PRINT A~ B
Lt0 RESTORE
50 DATA 3~ Lj

60 READ c~D
70 PRINT c~ D
RUN

1 2
2

STOP AT LINE 70
READY

The RESTORE statement may be used anywhere in the program

on a line by itself or anywhere in a multiple statement line.

RESTORE has no effect in programs without DATA and READ

statements.

3.8 INPUT STATEMENT

This statement is used to enter data from the keyboard while the

program is running. The data is typed in as BASIC asks for it.

For example:

10 INFUT A~ B~ C

will cause BASIC to pause during execution, print a question mark, and

wait for the user (you) to type three numerical values. The constant

values must be separated by commas and terminated with the RETURN key.

Only one question mark is printed for each INPUT statement.

If enough values are not supplied, BASIC will print:

ERROR 121 AT LINE nnn

If too many values are supplied, BASIC will print:

ERROR 122 AT LINE nnn

where nnn is the line number of the INPUT statement. In either

case, BASIC will print another question mark and wait for the

requested input.

The INPUT statement may be used anywhere in the program -­

on a line by itself or anywhere in a multiple statement line.

3-11

3.9 GOSUB AND RETURN STATEMENTS

It is often desirable to write a group of statements (a subroutine)

only once in a program and then branch to the subroutine repeatedly

from various points in fue program. The last statement of the sub­

routine should be a RETURN statement. The GOSUB statement is used to

branch (jump) to the first statement of the subroutine.

The RETURN statement must be used in conjunction with GOSUB.

However, a single RETURN statement will suffice for a single subroutine

branched to by more than one GOSUB, as illustrated below. The sub­

routine in lines 75 through 78 is entered from the GOSUB's in lines

20, 40, and 55, and exited by the RETURN in line 78.

5 PRINT "X", "Xt 2"~ "Xt 3"~ "Xt 4"~ "Xt 5"
10 FOR A = 1 TO 5
15 LET X = A
20 GO SUB 75
25 NEXT A
28 FOR A = 1 TO 5
30 LET X = At2
40 GO SUB 75
45 NEXT A
48 FOR A = 1 TO 5
50 LET X = At3
55 GO SUB 75
60 NEXT A
65 STOP
75 FOR J = 1 TO 5
76 PRINT XtJ~
77 NEXT J
78 RETURN
80 END

RUN
X Xt2 Xt 3 Xt4 Xt 5

1 1 1 1 1
2 4 8 1 6 32
3 9 27 81 243
4 1 6 64 256 1024
5 25 125 625 3125

1 1 1
4 1 6 64 256 1024
9 8 1 729 65 61 59049
1 6 256 4096 6553 6 1048576
25 625 15625 390 625 9 7 65626
1 1 1 1 1
8 64 512 4096 3276R
27 729 19 683 531441 o1434891F 8
64 4096 262144 • 1 677722F 8 ·1fil73742F 1fil
125 15 625 1953125 • 244140 6E 9 .3051758E 1 1

STOP AT LINE 65
READY

Both GOSUB and RETURN can be written in multiple statement lines,

provided they are the final statements in their respective lines.

3-12

3.9.1 Nested Subroutines

Subroutines may contain calls to other subroutines. When written

this way, the inner subroutine call is referred to as nested.

Such ordering might appear as follows, where a GOSUB statement at

line 20 calls a subroutine at line 100, which in turn calls a

nested subroutine at lines 117 and 150. Note in the following

example that one RETURN statement serves all three GOSUBs.

10 DATA 2, Lj

1 5 READ A,B
20 GO SUB 100
25 STOP
100 LET X=A
11 5 LET Y=B
11 7 GO SUB 180
1 30 LET X=Xt 2
1Li0 LET Y=<Yt2)
150 GO SUB 180
160 LET X=A + 1/A
170 LET Y=B - 1/A
180 PRINT x,y
18 2 RETURN

RUN
2 Lj

Lj 16
2·5 3·5

STOP AT LINE 25
READY

Such nesting can be carried to any level. The only restric­

tion is: for each nested subroutine entered a return address

(line number) must be stored until the RETURN statement is executed.

In systems with limited core space, deep nesting may reduce work­

ing storage below the requirement for the user program. (See Ap­

pendix A for storage requirements.)

An example of nested subroutine calls is illustrated in

Figure 3-1.

3-13

XXX GOSUB l~~
. <NEXT STATEMENT>--- if'

I
I XXX

1~~
1~5

STOP
GO SUB
<NEXT

2 ~ ~ - - - - - - - - -: - - - - - - - - ~.
STATEMENT>- - - - - -- - -~ I

I ., I
I

I

13~ RETURN - -- - - - - - ~ I

2~~ <1ST SUBROUTINE STATEMENT>--:- - -~

24~ RETURN---------- - --- ~
25~ END

Figure 3-l. Nested Subroutine Call

In Figure 3-1, above, from line 100 until line 240 two return

addresses are stored.

3.10 UNCONDITIONAL BRANCH, GOTO STATEMENT

The GOTO statement causes an immediate jump to an indicated line

number. Program execution continues sequentially again beginning

with the statement jumped to, as shown in the following example:

10 DATA 1,2,3,4,5
15 READ X
20 PRUI!T X+ 1
40 GOTO 15

RUN
2
3
4
5
6

ERROR
READY

20 AT LINE 1 5

The general format of the statement i~ :

1~ GOTO <line number>

Statements 15, 20, and 40 in the above example constitute a loop.

These three statements are re-executed continuously with a new

value of X each time line 15 is executed, until the last constant

value previously introduced at line 10 is used.

3-14

------------·

Program execution ends with an error message, indicating

that all data values have been used. This error message does not

indicate that the program printout is inaccurate (error messages

are explained in Chapter 6).

In the following example, the GOTO statement provides a

jump to an INPUT statement so that the program loops continually.

10 INPUT A
20 PRINT AJ
30 LET A=AtA
40 PRINT A
50 PRINT
60 GOTO 10

If written on a multiple statement line, GOTO must be the

last statement on the line.

3.11 CONDITIONAL BRANCH, IF STATEMENT

The IF statement supplies a conditional program branch. The

general format of the statement is:

45 IF <expression> ~THEN <operator> <expression> THEN
GOTO

NOTE

<statement> ~
<line number>
<line number>

The IF-THEN <statement> sequence is a special
feature or PDP-11 BASIC.

THEN can be followed by any statement including another IF

statement. If a line number follows THEN, the IF-THEN statement

operates in the same manner as IF-GOTO.

When BASIC encounters the IF statement, it evaluates the

expressions and compares them according to the requirements of

the logical operator, shown in Table 3-1. If the test condition

is met, the remainder of the statement beginning with THEN or

GOTO is executed. If the test condition is not met, the next sequen-

tially numbered statement after the IF statement is executed.

In the following example, a FOR-NEXT loop is in lines 10

to 35; the range of the control variable is 1 to 10. The IF-GOTO

statement is used to limit the range of the variable contained

in the FOR-NEXT loop. Operation of the loop continues until the

relationship A>4 is true, then immediately branches to line 55.

3-15

--~ .. --·--------------------

TABLE 3-l. Logical Operators

Standard BASIC
Symbol Version Example Meaning

A=B A equal to B

< < A<B A less than B

< <= A<=B A less than or
equal to B

> > A>B A greater than

> >= A>=B A greater than
equal to B

'I <> A<>B A not equal to

10 FOR A=1 TO 10
20 LET X=At 2
25 IF A> LJ GOTO 55
30 PRII\JT X
35 1\JEXT A
40 PRII\JT "VALUE OF A IS " A
55 STOP

RUl\J
1
Lj

9
16

STOP AT Lil\JE 55
READY

If line 10 is changed to

10 FOR A= 1 TO 3

the conditional statement at line 30 will have no effect on the

program. The loop will end normally when A reaches a value of

3 and program execution will continue with the PRINT statement

at line 40.

B

or

B

In the following example, THEN is followed by a line number at

line 45 and by a statement at lines 40 and 50.

At line 40, if X is less then or equal to 70, BASIC goes to line

45 and the PRINT statement at line 40 is not executed.

At line 45, if X is less then or equal to 70, BASIC goes to line

50 and the jump (or branch) to line 20 is not executed.

3-16

~~-------------------

~

At line 50, if X is greater than 70, BASIC goes to line 55

and the PRINT statement at line 50 is not executed.

10 REM - PROGRAM TO ASSESS GRADES
20 PRINT
25 INPUT A~B~C~D
30 LET X = <A+B+C+D)/4
35 PRINT: PRINT
40 IF X>=70 THEN PRINT x; "SATISFACTORY GRADE"
45 IF X>=70 THEN 20
50 IF X<70 THEN PRINT "FAILED THIS COURSE"
55 GOTO 20

RUN

72·25 SATISFACTORY GRADE

FAILED THIS COURSE

?

The IF statement can be used anywhere in a multiple statement

line except when a GOSUB or GOTO statement follows THEN. In this

case, the restriction on GOSUB applies, i.e., the IF statement must

be the last statement on the line.

A THEN-GOSUB statement provides a conditional jump to a sub­

routine. GOSUB must be the last statement on the line. Comple­

tion of the subroutine returns control to the statement on the

line following the IF statement (the next line in numerical se­

quence). An extension of our previous example will illustrate this

statement. (Note the conditional GOSUB in line 80.)

10 REM - PROGRAM TO ASSESS STUDENT GRADES
15 PRINT
20 PRINT "STUDENT NO - ";
30 INPUT A
40 PRINT "ENTER QUARTERLY GRADES -";
50 INPUT B~C~D~E
60 LET X = <B+C+D+E)/4
70 IF X< 70 THEN PRINT "FAILED COURSE - "; X
80 IF X>=70 THEN GOSUB 100
90 GOTO 15
100 IF X>93 THEN PRINT "HONORS -"; X
110 IF X<=95 THEN PRii\JT "PASSING GRADE -"; X
120 RETURN

3-17

RUN

STUDENT NO -? 1
ENTER QUARTERLY GRADES -?45, 55> 60> 40
FAILED COURSE - 50

STUDENT NO -?2
ENTER QUARTERLY
HONORS - 96.7 5

STUDENT NO -?3
ENTER QUARTERLY
PASSING GRADE -

STUDENT NO -?.!£.
READY

GRADES -? 98> 97 > 92> 100

GRADES -? 65> 7 5> 80> 77
74·25

(CTRL/P was typed here)

The IF statement at line 70 allows the PRINT statement on

the same line to be executed only if the value of X is less than

70. The IF statement at line 80 causes a jump to the subroutine

at lines 100 through 120 if the value of X is greater than or

equal to 70.

The RETURN at line 120 is to line 90 which, in turn, causes

a jump to line 15 to keep the program looping.

3.12 SUBSCRIPTED VARIABLES

BASIC allows the use of subscripted variables for handling data

arrays. Any variable name formulated according to the rules in

Section 2.5.2 can be given a series of values: the variable names

reference the specific array; the subscripts reference a particular

data item in the array. Typical subscripted or array variables

are:

A(fJ), A(l), A(2), A(3) ... A(n)

when used to reference a one-dimensional array, or list, and

A7($J,5J), A7($J,l), A7(1,$J), A7(l,l), ... , A7(n,n)

when used to reference the data items of the two-dimensional ar­

ray A7 (BASIC is limited to arrays of two dimensions).

NOTE

Array names consisting of a letter followed by a
number are legal; this is a special feature of
PDP-11 BASIC.

3-18

NOTE

Subscripts in PDP-11 BASIC begin with (0) for a
one-dimensional array and (0,0) for a two-dimen­
sional array. For these initial items the sub­
script need not be coded with the array name.
A(O,O), A(O), and A are the same variable.

3.12.1 The DIMension Statement

Prior to creating a data array of any size, a DIM statement must

be executed to reserve storage space. The statement must contain

the array name and maximum potential subscript:

20 DIM AlCLJ~LJ)

Because subscripts in PDP-11 BASIC begin with (0) or (0,0), the

statement above will reserve space for a 5 x 5 array, or one

capable of containing 25 discrete items.

Dimensioning a previously used variable is illegal. For

example, the following will produce an error message.

10 LET A3 = ere + B/3

40 DIM A3C 2~ 5)

The greatest possible subscript for any array variable is (255)

for a variable representing a list, or (255,255) for a variable

repres~g a two-dimensional array. Appendix A, Section A.3 pro­--- -vides data for computing potential array size for a given amount

of core.

3.12.2 Generating Arrays

Array variables have special relationships which simplify

operations on multiple data items. A list can be formulated,

and unique subscripts generated at printout, as follows. (Note

that lines 10 to 40 in the example build the array and fill it with

zeroes to prepare it for data entry.)

3-19

10 DIM AC 19)
20 FOR I=0 TO 19
30 LET ACI)=0
LJ0 NEXT I
45 LET I=0
50 INPUT X
60 LET ACI)=X
70 LET I= I + 1
80 GOTO 50
RUN
?2._
?.§..
?7
?8
?9
?TP (CTRL/P was typed here)
READY
PRINT A

5
PRINT A C 1)

6
PRINT AC2)

7
PRINT AC3)

8
PRINT ACLJ)

9
PRINT AC5)

0
PRINT AC6)

0
PRINT AC29)

ERROR 6 AT LINE 0
READY

Above, execution of the program is stopped with CTRL/P (see Sec­

tion 5.5) after the introduction of five constants. PRINT is then

used in immediate mode to examine the initial array elements. An

attempt to print the contents of an array location beyond the limit

set in the DIM statement produces the error message in the next to

last line of the example program.

The previous program is continued below to demonstrate how an

array can be printed out automatically.

85 REM- LINES 90 THRU 120 PRINT THE LIST SEQUENTIALLY
90 FOR I=0 TO 19
100 PRINT "AC "I")"~ AC I)
110 NEXT I
120 STOP
125 REM -LINES 130 THRU 150 PRINT A PORTION OF THE
126 REM - LIST IN REVERSE ORDER·
130 FOR I=6 TO 0 STEP -1
135 PRINT "AC"I")"~ ACI)
140 IF I=0 THEN STOP
150 NEXT I

3-20

~- ----· ~ ---

RUN
? 1
?2
i3
?4
?5
?tP
READY
GOTO 90
A< 0)

A< 1
A< 2
A< 3
A< Lj

A< 5
A< 6
A< 7 tP)

READY
GOTO 1 30
A< 6
A< 5
A< Lj

A< 3
A< 2
A<
A< 0

STOP AT
READY

Lll\JE

2
3
Lj

5
0
0
0

0
0
5
Lj

3
2

140

3.12.3 Two-Dimensional Arrays

(CTRL/P was typed here)

(CTRL/P was typed here)

The two-dimensional array is logically represented as a table of

two or more rows and columns. A 3 x 3 array, designated M, is

represented below:

1 2 columns

M(JO,~n M($0,1) M (~I 2)

M(l,$0) M(l,l) M($0,2)

M(2,J.:l) M(2,1) M (2 I 2)

Note that the initial constant in the subscript represents the

row designation.

In the following example program, space is reserved for a

two-dimensional array (line 10) and it is zero-filled (lines 20

- 45). In lines 20 and 25, the order of subscripts is optional:

it does not matter whether the array is zero-filled starting with

the first or last array item. However, if the order is reversed:

3-21

20 FOR J= 0 TO 4
25 FOR I=0 TO 4

then the order in lines 40 and 45 must be reversed:

40 NEXT I
45 NEXT J

This is to conform to the rule for nested FOR-NEXT loops: the

range of the nested loop must lie entirely within the range of

the outer loop.

10 DIM A c 4, 4)
20 FOR I =0 TO 4
25 FOR J=0 TO 4
30 LET ACI,J)=0
40 NEXT J
45 NEXT I
50 FOR I=0 TO 4
55 FOR J=0 TO 4
60 INPUT X
70 LET ACI,J)=X

80 NEXT J
85 1\JEXT
100 FOR I=0 TO 4
105 FOR J=0 TO 4
110 PRINT "AC"I","J")", ACI,J)
120 NEXT J
125 NEXT I

RUN
? 1
?2
?3
?LJ
?5
?6
?6
? f p
READY
GOTO
AC 0
AC 0
AC 0
AC 0
AC 0
AC 1
AC 1
AC 1
AC 1
AC 1

READY

100

' 0

'
2

' 3

' 4

' 0

'
' 2

' 3

' 4TP

2
3
4
5
6
6
0
0
0

3-22

(CTRL/P was typed here)

(CTRL/P was typed here)

Lines 50 - 85 provide for data input from the keyboard, and

limit inputs to the number of data spaces available in the array.

Lines 100 - 125 provide for printout and labelling of the

array data items. The order of subscripts in lines 100 - 125

must correspond with the order in lines 50 - 85 if the data is

to be printed out and labelled in the same order in which it

was entered.

The question marks following RtTN were printed by the INPUT

statement; the integers were typed in by the user. (The entire

array was not filled.)

Program printout appears after the immediate mode GOTO 100

statement. Since only seven data items were entered, the program

began to print zeroes after the seventh array item.

3-23

---- ---- ---- ------------ ------

.--.....

-------~------ ~~~--

CHAPTER 4

~· MATHEMATICAL FUNCTIONS

,----,

4.1 INTRODUCTION

BASIC contains ten functions to perform mathematical operations. They

relieve the user from programming his own routines to calculate such

things as square roots, logarithms, etc.

These functions have a three-letter call name followed by a

parenthesized argument. They are pre-defined and may be used any­

where in a program.

Call Name

SIN(x)

COS(x)

ATN(x)

SQR (x)

EXP (x)

LOG(x)

ABS(x)

INT (x)

RND (x)

SGN (x)

Function

Sine of x, where x is expressed in radians

Cosine of x, where x is expressed in radi­
ans

Arctangent of x is returned as an angle in
radians in range ±rr/2

Square root of x

Exponential of x

Natural logarithm of x (LOG (x))
e

Absolute value of x

Truncate fraction part of x (truncates to
the largest integer not greater than x)

Generate random number between ~ and l

Return a value indicating the sign of x

The argument x to the functions can be a constant, a variable,

an expression, or another function.

The first four functions (SIN, COS, ATN, SQR), termed extended

functions, may be deleted when loading BASIC (as explained in Chap­

ter 7). Deleting the extended functions provides an extra 300 words

of storage for user programs.

If floating-point exponentiation is not needed, the EXP and

LOG functions may be deleted (see Chapter 7) , providing another

250 words of user storage. When these functions are deleted, all

exponentiation will be done by repetitive multiplications, result-

4-l

ing in slower processing time but providing more storage space

for user programs.

4. 2 USAGE

Function calls, consisting of the function name followed by a

parenthesized argument, can be used as expressions or as elements

of expressions anywhere that expressions are legal.

The functions SIN(X), COS(X), ATN(X), SQR(X), EXP(X), and

LOG(X) produce a value accurate to +l in the 10-B position.

4.2.1 Sine and Cosine Functions, SIN(X) and COS(X)

The sine and cosine functions require an argument angle expressed

in radian measure. If the angle is stated in degrees, conversion

to radians may be done using the identity:

<radians> <degrees>

In the following example program, 3.14159265 is used as a

nominal value for n. P is set equal to this value at line 20.

At line 40 the above relationship is used (in the expression

within the LET statement) to convert the input value into radians.

10 REM - CONVERT ANGLE CX) TO RADIANS> AND
11 REM - FIND SIN AND COS
20 LET P = 3·14159265
25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"
30 INPUT X
40 LET Y = X*P/180
60 PRINT X, y, SINCY), COSCY)
70 GOTO 30

RUN
DEGREES RADIANS SINE
?0
0 0 0

?10
10 ·1745329 • 1 7 3648 2

?20
20 • 3490658 ·3420201

? 30
30 ·5235988 • 5

?360
360 6. 28 318 5 -.2925836E-8

?45
45 ·7853982 ·7071068

?90
90 1·570796

?f p
READY

4-2

CO SINE

• 9848078

·9396926

·8660254

·7071068

·1462918E-8

4.2.2 Arctangent Function, ATN(X)

The arctangent function returns a value in radian measure, in

the range +~ to - ~ corresponding to the value of a tangent

supplied as the argument (X) .

In the following program, input is an angle in degrees. Degrees

are then converted to radians at line 40. At line 50 the radian value

(Y) is used with the SIN and COS functions to derive the tangent of

the input angle according to the identity:

TAN(X) SIN (X)
COS {X)

At line 70 the tangent value, Z, is supplied as argument

to the ATN function to derive the value found in column 4 of

the printout under the label ATN(X). Also in line 70 the

radian value of the arctangent function is converted back to

degrees and printed in the fifth column of the printout as a

check against the input value shown in the first column.

10 LET P = 3·14159265
20 PRINT "SUPPY AN ANGLE IN DEGREES"
25 PRINT "A!\JGLE"~"Al\JGLE"~"TAl\J(X)"~"ATANCX)"~"ATANCX)"
26 PRINT "CDEGS)"~"CRADS)"~~~"CDEGS)"
30 INPUT X
40 LET Y = X*P/180
50 LET Z = SINCY)/COSCY)
70 PRINT X~Y~z~ATNCZ)~ATNCZ)*180/P
85 PRINT
90 GOTO 30

RUN
SUPPY AI\J ANGLE IN DEGREES
ANGLE ANGLE TANCX)
C DEG S) C RADS)

?0
0 0 0

?45
45 ·7853982

?90
90 1. 570796 ·6835653E 9

? .!..!:..
READY

4-3

ATA\JCX)

0

·7853982

1· 570796

ATAi\JCX)
CDEGS)

0

45

90

4.2.3 Square Root Function, SQR(X)

This function derives the square root of any positive value as

shown below.

10 INPUT X
20 LET X SQR<X >
30 PRINT X
40 GOTO 10

RUN
?,!_§_

4
?100

10
?1000

31·62278
?123456789

11111-11

?ll
4-123106

?25E2
~
?~
44-38468

? tP
READY

4.2.4 Exponential Function, EXP(X)

The exponential function raises the number e to the power x. EXP

is the inverse of the LOG function. The relationship is

LOG<EXP<X» X

The following program prints the exponential equivalent of

an input value. Note that the output values derived below are

used as input to the LOG function in Section 4.2.5.

10 INPUT X
20 PRINT EXPCX>
40 GOTO 10

RUN
? 4

54·59815
? 10

22'026-47
? 9·421006

12344·99
? 4·60517
99·99998

? 25
·720049E 11

? tP
READY

4-4

4.2.5 Logarithm Function, LOG(X)

The LOG function derives the logarithm to the base e of a given

value. In the following program at line 20, the LOG function is

used to convert an input value to its logarithmic equivalent.

10 INPUT X
20 PRINT LOG<X>
30 GOTO 10

RUN
?54·59815

4
?.22026· 47

10
?12345
9·421006

?100
4·60517

?·720049E11
25

? t p
READY

Logarithms to the base e may easily be converted to any

other base using the following formula:

where a represents the desired base. The following program

illustrates conversion to the base 10.

REM - CONVERT BASE E LOG TO BASE 10 LOG·
5 PRINT "VALUE"~ "BASE E LOG"~ "BASE 10 LOG"

15 INPUT X
17 PRINT x~
20 PRINT LOG <X>~
40 PRINT LOG<X>ILOG<10)
50 GOTO 15
60 END
READY
RUN
VALUE BASE E LOG
?!J..

4 1. 386294
?250

250 5·521461
?5

5 1. 609438
?60

60 4·094345

?~
100 4·60517

? t p
READY

BASE 10 LOG

·60206

2· 39794

·69897

1·778151

2

4-5

4.2.6 Absolute Function, ABS(X)

The ABS function returns an absolute value for any input value.

Absolute value is always positive. In the following program, vari9us

input values are converted to their absolute values and printed.

10 INPUT X
20 LET X A B S <X)
30 PRII\JT X
LJ0 GOTO 10

RUl\J
?-35·7
35.7

?2
2

?25E10
• 25E 12

?105555567
·1055556E: 9

?10-12345
10-12345

?-44-555566668899
4LJ • 55557

? f p

READY

4.2.7 Integer Function, INT(X)

The integer function returns the value of the greatest integer

not greater than x. For example:

PRINT IN T < 3 4 • 6 7)
34

PRINT INT<-5.1)
-6

The INT of a negative number is a negative number with the same

or larger absolute value, i.e., the same or smaller algebraic

value. For example:

PRINT INT<-23·45)
-24

PRINT INT<-14.39)
-15

The INT function can be used to round numbers to the nearest

integer, using INT(X+.S). For example:

PRINT INT<34·67+.5)
35

4-6

PRINT INT<-5-1+.5)
-5

--·-------

•.

INT(X) can be used to round to any given decimal place or

integral power of 10, by using the following expression as an

argument:

(X*l_0'tD+.5)/1_0'tD

where D is an integer supplied by the user.

10 REM - !NT FUNCTION EXAMPLE·
15 PRINT
20 PRINT "NUMBER TO BE ROUNDED:"
25 INPUT A
40 PRINT "NO· OF DECIMAL PLACES:"
LIS INPUT D
60 LET B = INTCA*10rD
70 PRINT "A ROUNDED =
80 GOTO 1 5
90 END

RUN

NUMBER TO BE ROUNDED:
?55·65842
NO• OF DECIMAL PLACES:
?2
A ROUNDED 55·66

NUMBER TO BE ROUNDED:
?78-375
NO· OF DECIMAL PLACES:
?-2
A ROUNDED 100

NUMBER TO BE ROUNDED:
? 67. 38
NO· OF DECIMAL PLACES:
? - 1
A ROUNDED 70

NUMBER TO BE ROUNDED:
? f p
READY

+ .S)/10TD

" B

4.2.8 Random Number Function, RND(X)

The random number function produces a pseudo-random number, or

random number set, between 0 and 1. The numbers are reproducible

in the same order for later checking of a program. The argument

(x) is not used and can be any number; it serves only to standard­

ize all BASIC function representations. For example:

4-7

10 REM - RANDOM NUMBER EXAMPLE.
25 PRINT "RANDOM NUMBERS:"
30 FOR I = 1 TO 15
40 PRINT Rl\JD(0),
50 NEXT I
60 END
RUN
RANDOM NUMBERS:

• 1002502
·3061218
·9854126E-1

·9648132
• 28 5553
• 5221863

STOP AT LINE 60
READY

-8866272
·9582214
·2462463

·6364441
·1793518
·7778015

To obtain random digits from 0 to 9, change line 40 to read

40 PRINT It\JT<10*Rl\JD(0)),

and run the program again. This time the results will be printed

as follows.

40 PRINT INT<10*RND<0)),
RUN
RANDOM NUMBERS:

1 9
3 2
0 5

STOP AT LINE 60
READY

8
9
2

6

7

It is possible to generate random numbers over a given range.

If the open range (A,B) is desired, use the expression:

(B-A) * RND(~) +A

The following program produces a random number set in the

open range 4,6 (the extremes, 4 and 6, are never reached).

10 REM - RANDOM NUMBER SET IN OPEN RANGE 4,6.
20 FOR B = 1 TO 15
30 LET A= <6-4) * Ri\JD(0) + 4
40 PRic\JT A,
50 NEXT B
60 END

RUN
4·2005
4·612244
4-197083

5·929626
4·571106
5·044373

STOP AT LINE 60
READY

4-8

5·773254
5-916443
4. 49 249 3

5· 27 2888
4. 3 58 7 0 4
5·555603

·8390198
• 4521179
·450592

8
4
4

5·67804
4·904236 •
4·901184

---------- ------

•

4.2.9 RANDOMIZE Statement

The RANDOMIZE statement causes the random number generator to

calculate different random numbers every time the program is run.

When executed, RANDOMIZE causes the RND function to choose a

random starting value to produce random results. For example:

10 REM - RANDOM NUMBERS USING RANDOMIZE·
15 RAC'JDOMIZE
25 PRINT "RANDOMIZED NUMBERS:"
30 FOR I == 1 TO LJ
LJO PRINT RND((]),
50 NEXT I
60 END

RUN
RANDOMIZED NUMBERS:

·778503LJE-1 ·1632385
STOP AT LINE 60
READY
RUN
RANDOMIZED NUMBERS:

.8LJ17053 ·1678LJ67E-2
STOP AT LINE 60
READY
RUN

t.\lUMBERS: RANDOMIZED
·6651917

STOP AT LINE
READY

• 28LJ6375
60

·2787781

.L)3LJ7229

·7210999

·2035217

·5932312

• 7 6 LJ8 6 21

Removing the RANDOMIZE statement and changing line 25:

DELETE 15
READY
25 PRINT "REPRODUCIBLE RANDOM NUMBER SET·"

program output is as follows.

RUN
REPRODUCIBLE RANDOM NUMBER SET·

• 1002502 ·96LJ8132 ·8866272 ·636LJLJLJ1

STOP AT LINE 60
READY
RUN
REPRODUCIBLE RANDOM \lUMBER SET·

• 1002502 ·96LJ8132 .8866272 ·636LJLJLJ1
STOP AT LINE 60
READY
RUN
REPRODUCIBLE RANDOM NUMBER SET·

• 1002502 ·96LJ8132 .8866272 ·636LJLJLj1

STOP AT LINE 60
READY

4-9

4.2.10 Sign Function, SGN(X)

The sign function returns the value 1 if x is a positive value, 0 if

x is 0, and -1 if x is negative. For example:

PRINT SGN<3·42)
1

PRINT SGN<-42)
-1

PRINT SGN<23-23)
121

The following example program illustrates the use of the

SGN function.

1121 REM - SGN FUNCTION EXAMPLE·
2121 READ A, B, C
25 PRINT "A = "A, "B = "B, "C "C
3121 PRINT "SGN<A) ="SGN<A), "SGN<B) ="SGN<B),
4121 PRINT "SGl\J(C) ="SGN(C)
5121 DATA -7·32, .44, 121
6121 END
READY
RUN
A = -7·32
SGN <A) =- 1

B ·44
SGN<B) = 1

STOP AT LINE 6121
READY

4.3 USER-DEFINED FUNCTIONS

c 121
SGl\J <C) = 121

In some programs it may be necessary to use the same mathematical

expression in several places, often using different data. BASIC's

user-defined function enables you to define unique operations or ex­

pressions and call them as you would the standard mathematical func­

tions, i.e., sine, cosine, square root, etc.

The user-defined function is identified by a three-letter call

name followed by a parenthesized argument. The first two letters of

the function name are FN and the third letter may be any letter in the

alphabet; thus, as many as 26 unique user-defined functions are

possible. The parenthesized argument is explained below.

The user-defined function must be defined before it can be used.

It is defined using the DEF statement; the general format is:

DEF FNa(variable) = expression

4-10

where "a" can be any letter. For example,

10 DEF FNX(S) = St2+4

would cause the statement

:.D LET R = FNX (4)

to be evaluated as LET R=4t2+4, or

20 LET R = FNX(2)

to be evaluated as LET R=2t2+4. The function name, FNX(S), represents

the expression, St2+4, in the DEF statement, and when called, the

parenthesized argument, (4) or (2), is equated with the function vari­

able, (s).

When called, the parenthesized argument may be any legal expres­

sion; the value of the expression is substituted for the function

variable. In the following example, the function FNZ at line 10 will

square whatever is substituted for the function variable. At line 30

the expression 2+A evaluates to 4, which is then squared to give a

printed result of 16.

10 DEF FNZCXl = Xt2
20 LET A = 2
30 PRINT FNZC2+Al

RUN
16

STOP AT LINE 30
READY

Here's another example:

10 DEF Fi'J A C Z) Z+A+B
20
30
LJ0
50

RUN
16

DATA 2~ Lj

READ A~B
LET F Fl\IAC 9)
PRINT F

STOP AT LINE 50
READY

+ 1

The function name may be used recursively, as in the following

example. The expression in line 30 is evaluated as (2+(2*4)) before

being squared in line 10.

4-ll

10 DEF FNACX) = Xr2
20 LET A = 2
30 PRINT FNAC2+A*FNAC2))

RUI\J
100

STOP AT LINE 30
READY

If the same function name is defined more than once, the first

definition is used and subsequent definitions are ignored, as shown

below.

10 DEF FNXCX) = XT2
20 DEF FNXCX) = X+X
30 PRINT Fl\JXC6)
40 El\J D

RUN
36

STOP AT LINE 40
READY

The function variable need not appear in the function expression;

later substitution of an expression for the variable will have no

affect, as illustrated below.

10 DEF FNACX) = LJ + 2
20 LET R FNAC 10) + 1
30 PRINT R

RUJ\J
7

STOP AT LINE 30
R£ADY

4-12

CHAPTER 5

BASIC COMMANDS

BASIC's commands are used to perform various operations such as

executing a program, stopping program execution, punching a pro­

gram on paper tape, loading a program from paper tape, etc.

5.1 LIST

To obtain a clean copy of an edited program, type LIST followed

by the RETURN key. The program will be printed on the Teletype

and BASIC will again print READY.

To print a single line, type its line number after LIST.

To print a series of lines, 'follow LIST with the initial and

ending line numbers; these lines plus all lines between them will

be printed. For examples:

LIST 37

prints line 37;

prints lines 37 through 126;

LIST

prints the whole program.

5.2 DELETE

The DELETE command is used to erase lines from the program. The

DELETE command requires an argument. This prevents accidental deletion
of the entire program.

If only one line number is given after the DELETE command,

that one line will be deleted. If two line numbers separated by

a comma are given, those two lines and all lines between them will

be deleted. For example:

DELET~ 54

will erase only line 54;

5-1

will erase lines 36 through 876;

DE:LSTE 1,3191

will erase the entire user program storage area.

5.3 SAVE

NOTE

If, for example, DELETE 10,5 is typed where the
initial line number is greater than the second,
BASIC will respond with READY, but no lines will
be deleted.

SAVE will punch the user's BASIC program on the low-speed or

high-speed punch, depending on your response to BASIC's initial

dialogue at load time (see Chapter 7) .

When using the high-speed paper tape punch, turn the punch on

before issuing the SAVE command. When using the low-speed punch,

type SAVE, turn the punch on, and then type the RETURN key.

5.4 OLD

NOTE

When BASIC finishes punching the saved program
it punches 64 frames of trailer tape and then
types READY. If the low-speed punch is used,
READY is also punched into the tape and will_
cause errors]Vhen the tape is read. (READY will
be interpreted as an immediate READ Y) . To avoid
this problem the user must:

a. Turn the punch off while trailer tape is
still being punched; or

b. If punching is complete, tear the tape
within the trailer section, eliminating the
extraneous code which appears at the end.

The OLD command is used to read in user programs which were pre­

viously saved on paper tape. Either the low-speed or high-speed

reader may be used, depending on system configuration and your

response to BASIC's initial dialogue (see Section 7.1).

5-2

To read in a paper tape, place the tape in the appropriate

reader and then type the OLD command followed by the RETURN key.

After the tape stops, BASIC prints READY.

NOTE

When the low-speed reader is used, CTRL/P must be
typed with the tape stops; BASIC then prints READY.

As the tape is read in, BASIC scans each line. Any of several

fatal errors may be detected as the saved program is scanned. These

will cause printout of an error message and termination of the read­

in.

In executing the OLD command, BASIC automatically clears core

before starting the reader. Any programs in core will be lost, with

the exception of EXF function programs (see Chapter 8) .

Once in core the saved program can be edited, added to, or

executed in the same manner as a newly-created program.

5.5 STOPPING A RUN, CTRL/P

Typing CTRL/P causes BASIC to stop execution at the end of its~current

task or statement, print tP, and then READY. There may be a delay

from the time CTRL/P is typed until BASIC prints READY. If, for ex­

ample, CTRL/P is typed while a PRINT statement is executing, BASIC

will complete the PRINT statement before typing READY.

CTRL/P has no affect on variable values. Therefore, after typing

CTRL/P, variable values may be examined or used in PRINT statements.

5.6 RUN

The RUN command causes deferred mode programs to begin execution

starting at their lowest numbered line. When RUN is used to re­

run a program previously executed, all variable values are deleted

from memory. If the RND(X) function is included within the pro­

gram, it is reset to its initial starting value.

5.7 COMMANDS IN USER PROGRAMS!

It is possible to include the BASIC commands RUN, LIST, DELETE,

SAVE, and OLD, preceded by a line number, in user programs.

1This usage is a special feature of PDP-11 BASIC.

5-3

When the command is encountered, the requested operation will be

performed.

When RUN is executed in a program, it causes the program to

restart. This can be useful to obtain repeated results from a

program.

When the LIST, DELETE, SAVE, and OLD commands are used in a

program, BASIC exits from the program and prints READY upon com­

pletion of the commanded operation.

5-4

CHAPTER 6

ERROR MESSAGES

6.1 FORMAT

BASIC checks program statements and input for errors, and prints

an appropriate error message for each error detected. Messages

are printed in the following format:

ERROR xxx AT LINE yyy

where xxx is the error code, as described below, and yyy is the

number of the line in which the error occurred. If yyy appears

as 0, it indicates that the error was made while in command mode,

that is, the error was made at the last line typed in.

Error codes from 0 to 64 indicate a fatal error -- program

execution will halt with the printing of the error message.

Codes from 65 to 127 indicate a non-fatal error -- the program

may continue to run after the error message is printed.

6.1.1 Fatal Errors

Error Code

$J
l
2
3

4
5
6

7
8
9

l$J
ll
12
13
14
15
16
17

18
19

Meaning

User storage overflow (see Appendix A, Sec. A.6)
Unrecognizable statement
Illegal GOTO or GOSUB
Illegal character terminating a state­
ment (usually caused by an ill-formed
statement which causes the statement
operation to end prematurely) .
RETURN without corresponding GOSUB
Badly formed subscript
Subscript not in range $J to 255 or
exceeds maximum set by program
Mismatched parentheses
Illegal LET
Illegal relational operator in IF
Illegal IF
Illegal PRINT
Input line too long (exceeds 80 characters)
Bad dimension in DIM statement
Not enough storage for the array
Badly formed DEF statement
Illegal line number or dimension value
DIM of previously declared or used item.
It is illegal to dimension any item which
has been previously used in any way.
Bad variable in INPUT list
Bad variable in READ list

6-l

Error Message

2~
21
22
23
24
25
26

27

Meaning

Out of data in READ list
Bad DATA statement format
Illegal FOR statement
No NEXT matching FOR
NEXT without FOR
Unmatched quotes in statement
EXP function improperly set up (bad link­
age in location 50)
Ill-formed expression (probably missing
exponent on E format number)

6.1.2 Non-Fatal Errors

Error Code

12~
121
122
123
124

125
126
127

Meaning

Illegal characters on input
Not enough data typed to INPUT
Too much data typed to input
Non-existent variable
Number too large to fix (probably a
subscript combination out of range)
Divide/multiply overflow or underflow
Square root of negative number
Logarithm of negative or zero number or
exponential overflow

6-2

CHAPTER 7

r'- LOADING AND STARTING BASIC

/' ... - •

7.1 INITIAL DIALOGUE

BASIC is supplied as a single binary paper tape and is loaded

using the Absolute Loader (see Appendix D) . Upon completion of

loading, BASIC will type its name and version number followed by:

which stands for option. The user may respond with parameters

from the following list in any order separated by commas and

terminated by typing the RETURN key. These parameters are:

L

D

E

H

X

Use the low-speed reader/punch for the
SAVE and OLD commands instead of the
high-speed reader/punch. If there is
no high-speed reader/punch, the low­
speed reader/punch will be automatically
selected.

Delete the extended functions, i.e., SIN,
COS, ATN, SQR.

Delete EXP and LOG, as well as the ex­
tended functions.

Halt before entering the interpreter to
allow loading of the EXF function (see
Chapter 8).

Where X may be any integer between 4 and
28 to override automatic assignment of
memory. The automatic process assigns to
BASIC all memory available in the proces­
sor. This command allows the user to
force BASIC to use less than the maximum
configuration and is stated in increments
of lK.

If a user types only the RETURN key in response to *0, the

options are as follows:

l. If a high-speed reader exists on the system
it will be utilized.

2. All extended functions will be retained.

3. BASIC will utilize all of available memory
for the user storage.

4. BASIC will not halt to allow loading an EXF
function.

7-l

7.2 LONG FORM OF DIALOGUE

If a user does not understand the allowable options, he can type

a question mark and the RETURN key to get the long form of the

initialization. The long form will also result if his response

to *0 is in error. This will cause the following questions to

be printed, which require individual YES or NO answers.

DO YOU NEED THE EXTENDED FUNCTIONS?
HIGH-SPEED READER/PUNCH?
SET UP THE EXTERNAL FUNCTION?

The final question shown below requires a numerical answer between

4 and 28, as described under X in Section 7.1 above, or a RETURN

key if automatic assignment of memory is desired.

MEMORY?

After the response to all queries, BASIC types:

READY

7.3 RESTARTING BASIC

BASIC may be restarted by setting the ENABLE/HALT switch to HALT,

placing 0 in the switch register, pressing LOAD ADDRess, setting

ENABLE/HALT to ENABLE, and then pressing START.

All program text and data will be cleared in a restart.

7.4 LOADING THE EXF PROGRAM

If the H option is among those typed in response to BASIC's *0

query, or if question 4 of the long form is answered YES, BASIC

first attends to any other parameters that have bee'n entered,

then halts to allow loading of the assembler-coded program (see

Chapter 8).

The binary program is loaded using the Absolute Loader, as

described in Appendix D. Since the user program ends with a

transfer address of 52 (see Chapter 8 for EXF program requirements),

BASIC is signalled when the load is complete and prints:

READY

If the user program is on more than one tape, only the

last may contain the transfer address.

7-2

CHAPTER 8

USING ASSEMBLY LANGUAGE PROGRAMS WITH BASIC

NOTE

The user must be familiar with the PAL-llA
Assembler and assembly language as described
in the PDP-11 Paper Tape Software Programming
Handbook, DEC-11-GGPA-D, and the PDP-ll Hand­
book 1970.

8.1 DESCRIPTION

The BASIC function call, EXF, when written as any other function

within an expression, serves to link the user's BASIC program

and a PAL-llA assembly language program coded for compatibility

with BASIC and resident in core. 1

When BASIC encounters the EXF function call it passes con­

trol to the assembly language program, which can, in turn, "borrow"

BASIC's internal routines, such as ITOA (Integer-TO-ASCII) or

EVALuate.

The EXF function call can be used as an expression, or as

an element of an expression, anywhere that an expression is legal

in BASIC syntax:

10 LET X EXF'CX+5)

or

10 PRINT x, EXFCX)

8.1.1 Format of Function Call

The external function is called with its three-letter mnemonic

followed by a parameter list in parentheses. For example, consider

the following.

EXFC2)
EXF< SINCX+5))

and

1once in core, the external program can only be deleted by re­
loading BASIC.

8-l

are all valid forms of the EXF function.

The EXF call is always to the same external program. How­

ever, the external program may have several entry points to per­

form differing functions. Designators for such entry points may

be in the parameter list following the function call name

anywhere except as the first parameter. The external program must

recognize and utilize such entry point designators.

8.1.2 Evaluation

Before yielding control to the external program, BASIC evaluates

the first item of the parameter list. The value is stored, and

register RO is set to point to its storage location.

Rl is set to point to the comma following the first argument,

or, if there is only one argument, to the character following the

final parenthesis (to facilitate return to the BASIC program when

EXF has completed execution) .

It is the user's responsibility to evaluate and use any argu­

ment after the first. However, if any of the remaining arguments

are valid BASIC expressions, the BASIC subroutine EVAL can be

called from the external program to evaluate them.

To illustrate, the sample EXF calls in Section 8.1.1, above,

will be used. In the first example:

EXF' < 2)

no evaluation is necessary. The value 2 is placed in a storage

location and RO is set to point to it.

In the second example,

F_,XF < .S I \J <X+ 5))

SIN(X+S) will be evaluated and stored as above.

In the third example, Xt2 will be evaluated and Rl will point to

the comma between Xt2 and XY to allow the external program to pick up

the remaining parameters. XY and BC#@ are not valid BASIC expressions

and must, therefore, be dealt with by the user program. The final

8-2

parameter, A*Y, is in legal BASIC terminology: The BASIC subroutine

EVAL can be called to perform the evaluation (see Section 8.3.1).

8.1.3 Recursive EXF Calls

EXF calls of the form:

EXFCEXFCX))

are acceptable. The EVAL routine is recursive (as are all of BASIC's

internal functions) to allow recursive function calls.

Statements of the type above, however, will cause the ex­

ternal function to be re-entered before the first call is complete;

the external function must also be re-entrant if this type of call

is utilized.

8.2 REQUIREMENTS FOR THE EXTERNAL ROUTINE

lows:

1. The binary routine must be loaded into the highest
memory available to the user program. For example,
a routine 50 bytes long which is to be loaded
into an 8K s9~tem would start at location 37410
since it is required to end at location 37472.
This allows BASIC to properly set up its stack and
user program area.

The upper limit for routines in all configurations is as fol-

Core Size

4K
8K

12K
16K
20K
24K
28K

Highest Free Location

17472
37472
57472
77472

117472
137472
157472

2. The first word of the routine must be the starting
address (entry point) of the routine.

3. The address of the first word of the routine must
be loaded into location 50. This may be done when
the routine is assembled with PAL-llA by placing
the following lines of code at the beginning of the
user routine; assume label SEXF is the entry point
of the external routine:

.=5~

.WORD SEXF
;REFERENCE LOCATION 5~
;STORE FIRST WORD ADDRESS

8-3

4. The transfer address must be specified as follows:

.END 52

If more than one tape comprises the routine, only the last

tape loaded should have a transfer address.

5. All exits from the user routine should be in the
form of a jump to location 52.

6. A user routine may place items on the stack for
temporary storage as long as they are removed be­
fore exit. The one exception is that upon exit
from the user routine the top of the stack must
contain the function value in 3-word floating­
point format.

7. Upon entry to the function, the parameter list
evaluation is as follows:

a. RO contains the address of the numeric
value (3 word floating point) of the
first parameter which has been previously
evaluated by BASIC.

b. Rl points to the comma following the
first parameter or, if there is none, to
the character following the closing paren­
thesis.

Item b, above, allows the programmer to specify arguments in

addition to the one evaluated by BASIC.

8. Upon exit, register Rl must point to the charac­
ter immediately following the closed parenthesis
which ends the function call, and register R5
must be restored.

The user must define and interpret all of the parameters fol­

lowing the first, and assure that a closed parenthesis exists for

the function call.

It is not recommended that the EXF function be used in less

than an 8K PDP-11 system, unless all optional BASIC functions are

deleted. The user area will be reduced in size rather excessively

by the EXF function (see Appendix A) .

WARNING

It is up to the programmer to assure that storage
overflow does not occur. Upon entry to the EXF
routine, R5 points to the highest address current­
ly in use by BASIC. The programmer must check to
make sure that when he uses the R6 stack that he

8-4

never overflows the area used by BASIC (R6 may
never contain a lower address than R5}. This
overflow condition must be checked every time
EXF is used, since the BASIC storage is dynamic­
ally used and changes often.

8.3 USING BASIC'S INTERNAL ROUTINES FROM "EXF"

8.3.1 EVAL

The programmer may use BASIC's EVAL function to evaluate arguments

in a parameter list of the following rules are followed.

1. The parameter to be evaluated must follow all
the rules for a normal BASIC expression.

2. EVAL must be called once for each parameter to
be evaluated.

3. A parameter must be followed by a comma or a
right parenthesis.

Calling EVAL is done using a TRAP call with the value 104536.

Upon entry to EVAL, Rl must point to the start of the character

string to be evaluated and R5 must have, or be restored to, the

same value it had when the EXF routine was entered by BASIC.

Control will be returned to the user routine at the instruc­

tion following the EVAL call.

Registers 2, 3, and 4 will contain the value of the expres­

sion. Register 1 will contain the address where the scan failed

(a comma causes a scan failure, and is therefore an effective de­

limiter). If the scan fails on any character other than a right

parenthesis, Rl will point to the character where the failure

occurred. If the scan ended on a right parenthesis, Rl will point

to the character following the parenthesis and the V (overflow)

bit in the status register will be set. If the V-bit is set on

any parameter other than the last or is cleared on the last para­

meter, a mismatched parenthesis error has occurred.

Errors may occur in the evaluation as follows:

1. If a parenthesis (other than the special case men­
tioned above) is missing or improperly placed in
an expression to be evaluated, a fatal error call
is made from EVAL. The user routine will not re­
gain control.

8-5

2. If a storage overflow occurs due to an evaluation,
a fatal error call is made. The user routine will
not regain control. (See Appendix A.6.)

3. If a non-existent variable is referenced, the value
of the non-existent variable is assumed to be zero
for the evaluation, and the user routine will regain
control normally.

When EVAL is called, all registers are used.

The EVAL routine is fully recursive to allow nested function

calls. However, care must be taken when using calls of the form:

EXFCEXFCiO)

since the EXF function will be re-entered a second time before

the first call is complete (the EXF function must also be re­

entrant). Also, deep nesting can cause an overflow if the avail­

able user storage is minimal.

8.3.2 Other Routines Available to th~ User

The following routines are also available to the user routine.

interface information, see Table 8-1 below.

ATOF

ATOI

ITOA

IMUL

ADDF

SUBF

NEGF

DIVF

MULF

CMPF

FIX

FLT

Convert ASCII string to floating-point number

Convert ASCII string to integer number

Convert integer to ASCII string

Integer multiply

Floating-point addition

Floating point subtraction

Floating-point negative

Floating-point divide

Floating-point multiply

Floating-point compare

Convert floating-point number to integer

Convert integer to floating-point number.

For

Additional routines in BASIC may be used only if the program­

mer becomes extremely familiar with the internal BASIC structures.

Do not use the routines GTOPR or GETOP as they are used by

EVAL and they, in turn, use EVAL in a recursive fashion.

8-6

---- ----- -----

TABLE 8-1

Usage Data for BASIC Functions

TRAP REGISTERS
NAME CALL INPUT OUTPUT USED

ATOF 1,044,06 Pointer to ASCII 3-word F.P. Number
String in Rl stored where R,0

pointed at entry. ALL
Rl points to lst
illegal character

ATOI 1,0441,0 Pointer to ASCII Number in R,0. Rl
points to first ALL
illegal character

ITOA 1,04412 Number in Rl Pointer to output ALL
area in R,0

IMUL 1,04416 Numbers in R,0 High order in R,0 ALL
and Rl Low order in Rl

ADDF 1,0 4 4 2,0 Pointers to num- Result where R,0 ALL
pointed at entry

SUBF 1,04422 Pointers to num- Result where R,0 ALL
bers in R,0 and Rl pointed at entry

NEGF 1,04424 Pointer to number Result where R,0 ALL
in Rl pointed at entry

DIVF 1,04426 Pointers to num- Result where R,0 ALL
bers in R,0 and Rl pointed at entry

MULF 1,0443,0 Pointers to num- Result where R,0 ALL
bers in R,0 and Rl pointed at entry

CMPF 1,04434 Pointers to num- Same condition
bers in R,0 and Rl codes as CMP in- ALL

struction.

FIX 1,0444,0 Number in R2, R3, Result in R,0 R,0, R2, R3, R4
R4

FLT 1,04436 Number in Rl Result where R,0 R,0-R4
pointed at entry

8-7

'~

CHAPTER 9

DEMONSTRATION PROGRAMS

The following programs illustrate some typical BASIC instruction se­

quences and, additionally, provide models for some useful program

types, e.g., loan payment computation and measurement conversion.

Some of the programs were typed into core and LISTed for inclusion

below.

Program 1:

This program illustrates the use of the comma and semicolon

in PRINT statements. Also at line 30, the PRINT statement is

used without a variable list to insert a blank line in the print­

out.

LIST

5 REM - USE OF COI\JTROL CHi'!fiACTERS 11\J "PRI:\JT".
10 REAL A, B, C
20 PRI'JT A, B> c, At2, Bt2, Ct2
30 PRI:\JT
LJiZJ PRI\JT A; B; c; At2; Bt2; Ct2
50 DATil 2, LJ, 6
99 E:\JD
READY
RUN

2 Lj 6
36

2 Lt 6 LJ 1 6 36

STOF AT LI,\JE 99
REALY

Program 2:

Lj

A program to compute grade averages. Line 40 to 120 (FOR­

NEXT statements) form a program loop. Within this loop, lines

75 to 90 form an inner nested loop. Note lines 100 and 130

where computations are performed within PRINT statements.

9-1

16

LIST

10 REM - ?ROGRAM TO T~KE AVERAGE 0? STUD~NT GRADES A~D CLASS GRADES.
20 PRI1\JT "r-!l)i;J MA'JY STUDE"JTS, HOW M"l\JY Gfi/\DES PER STUDE'JT";
32J INPUT A,. B
35 L E'~ V = 0
40 FOR J = 1 TO A
50 PY:ll 'JT "STUDE~\JT .'JlJ!'iBER IS: "; ,J
60 PRINT "i>JTER CiR/liJES:"
70 LET lvJ
75 FOR I\
8;)) I \JPUT G

0
l TO B

8 5 L ;o: T M i'J + c:,
90 NSXf K
100 PRI'JT "i'I'JERMi;:: GRt\DE IS: "; M/B
105 PBINT
110 LET V = V+M/B
120 N ~XT J
1 30 P E PJT '. CL A S S A V S R 1\C3 E I S : " ,; VI A
1 ,~0 E~ D
READY

HUN
HOW MA\JY STUDE\JTS, HO~ MA\JY GRADES PER STUDE'JT?3.~

STJDE:\!T i'JIJi~BER IS: 1
E·\J TER G R/\DE S:
?88
?92
?8 5
?79
AVERAGE GRADE IS: 36

STUD~NT NUMBER IS:
ENTER GRi\DES:
?70
?8 7
?e
?76
AVERAC?S GR."lDE IS: 58·2':!

STUDEl\JT 1 \JU'~BER IS: 3
E:'JTER GR.i'\D-o:S:
? 7 <3
?86
?82
? 7 Lj

~VERAGE GRADE IS: 80

CLAS.S AVt:RAC:S IS: 74• 75

STOP i''.T '-.IN~ 1LJ!J
RE.'.\DY

9-2

Program 3:

This program provides an algorithm for computing roots.

Extra spaces in the formatting of lines 30 to 70 have no effect

on program execution.

10 PRINT "t\JUt1BER" J "SQLJ,;Rs ROOT", "CUBE ROOT", "FOURTH ROOT"
20 FOR N = 1 TO 1~

30 PRINT N,
40 FOn R = 2 TO 4
50 PRINT Nr(J/R),
60 NEXT R
7~ PRINT
80 NEXT N
99 END

RUN
NU11BE.R

1
2
3
4
5
6
7
8
9
10

STOP AT LINE
READY

Program 4:

SQUJ.;RE ROOT
1
1-414214
1·732051
2
2·236068
2·44949
2.6145751
2·828427
3
3·162278

99

CUBE ROOT FOUiHH ROOT
1 1
1·259921 1· 189207
1·44~25 1-316274
1·587401 1·414214
1·7'lJ9976 1-49534~

1·817121 1·565035
1·912931 1·626577
2 1·681793
2·081)0134 1·732051
2·154435 1·778279

This program illustrates the use of RESTORE. At line 20, the

READ statement associates the first data element in line 90 with the

variable N. The next data element in line 90 (1), is assigned to the

next variable, X, in the READ statement in line 30. The program

iterates three times more through the loop formed by statements in

lines 30 and 60, printing the remaining values in lines 90 and 95.

At line 65 the DATA statement pointer is reinitialized.

Therefore the first constant in the reinitiated DATA list, 4,

is available when the "READ X" statement is executed. This

value is printed out and the program iterates three more times

through the FOR ..• NEXT loop in statements 80 and 86, printing

out the succeeding three values in lines 90-95.

9-3

10 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE.
20 READ N
25 PRINT "VALUES OF X ARE:"
30 FOR I=l TO N: READ X: PRINT x,
60 NEXT I
65 RESTORE:
7'lJ PRINT: PRINT "SECOND LIST OF X VP1LUES ARS:"
71 PRINT "RESTORE STATEMENT USED HERE·"
80 FOR I= 1 TO N: READ X: PRINT x,
85 NEXT
90 DATA 4, 1, 2, 3, 4
99 END

RUN
VALUES OF X ARE:

1 2
SECOND LIST OF X VALUES
RESTORE STATEMENT US .ED

4 1
STOP AT LINE 99
READY

Program 5:

3
ARE:

HERE.
2

4

3

This program utilizes the INTeger function at line 25,

to round off to integer notation the computed value of the

variable B.

1 REM -- AN EXAMPLE OF THE "INT" FUNCTION.
2 REM BASIC WILL CONTINUE TO AS){ FOR THE NEXT
3 REM
4 REM

NUMBER TO BE ROUNDED. THERE IS NO "END"
STATEMENT.

5 REM
10 PRINT

TYPE CTRL/P TO TERMINATE THE PROGRi1M.

15 PRINT "NU:13ER TO BE ROUNDED:":
20 PRINT "NO. OF DECIM.AL PLACES:":
25 LET B = INTCA*10tD+.5l/10tD
30 PRINT "A ROUNDED =" B
35 GOTO 10

RUN

NU:1BER TO BE ROUNDED:
? 55.65842
NO. OF DECIMAL PLACES:
? 2
A ROUNDED = 55.66

NUMBER TO BE ROUNDED:
? 67.89
NO • OF DECIMAL PLACES:
?~
A ROUNDED = 68

NUMBER TO BE ROUNDED:
? 78-375
NO. OF DECIMAL PLACES:
? .L
A ROU:\JDED = 78·4

9-4

INPUT A
INPUT D

(continued on next page)

NUMBER TO BE ROUNDED:
? 78·375
NO. OF DECIMA.L PLACES:
? -3
A ROUNDED = 0

NU:vlBE.R TO BE ROUNDED:
? 78·375
NO. 0? DECIMAL PLACES:
? LJ

A ROUNDED = 78·375

NUMBER TO BE ROUNDED:
?!£
READY

Program 6:

This program uses the INT function in testing for the largest

factor of a given number. Since it starts with a value greater

than that of the largest possible integer and works downward,

the first number which qualifies as a factor will also be the

largest factor.

5 REM - BASIC WILL PAUSE WHEN CALCULATING
6 REM - THE LARGEST FACTOR.

10 PRINT "NU~1BER"~ "LARGEST FACTOR"
20 FOR N = 1001 TO 1020 STEP 2
3:21 PRINT N~

40 FOR F = INTCN/2) TO 1 STEP -1
50 IF N/F <> INTCN/F) THEN 80
60 PRINT F
70 GOTO 90
80 NEXT F
90 NEXT N
99 END

RUN
NUt•1BER LARGEST FACTOR

1001 143
1003 59
1005 335
1007 53
1009 1
1 0 11 337
1013 1
1015 203
1017 339
1019

STOP AT LINE 99
READY

9-5

----- ---- --·--------------------------------

Program 7:

This program converts metric length measurements to feet.

By substituting an INPUT statement for the DATA and READ state­

ments in lines 100, 240, and 250, the program could be converted

to an on-line calculator program.

100 REI'\D M, C
110 LET M1 = M+C/100
120 LET I M1*39·37
130 LET F = I~TCI/12l
140 LET I = I-12*F
150 PRINT :'l,"l"iETERS,",C,"CE'\JTIMETERS"
160 PRINT "CONJERTS TO:"
170 IF F = 0 THEN 190
180 PRTNT F, "FEET,",
198 PRINT I, "IN2f-lES"
200 PRI~T
220 GOTO 100
240 DATA 1, 0
250 DATA 0, 2 ·54, 0, 60, 2, 5
260 END

RUN
1 METERS,

CO:\JJF.RTS TO:
3 FEET,

0 METERS,
CONVERTS TO:

·9999:18 INCf-!ES

0 METEFS,
CO:\JJERTS TO:

1 FEET,

2 METERS,
CO:\JJERTS TO:

6 FEET .•

ERROR 20 AT LINE 100
READY

Program 8:

0

3-37

2. 51-±

60

11-622

5

8·7085

CENTIMETERS

IN2HES

CENTIMETERS

CENT I METERS

I N:::i-JES

CENTIMETERS

IN2i-!ES

The use of subroutines is illustrated here. GOSUB is con­

tained in line 80 and RETURN in lines 160, 190, and 210.

There are three paths through the program; which one is

taken depends upon the number of possible solutions to the quad­

ratic equation. Program switches, operated through logical

tests, are contained in lines 140 and 170.

9-6

------ --- --

/~

,~

REM -- THIS PROGR.C\CVI ILLUSTRATES "GO SUB" AND "RETURN",
2 REM AS WELL AS CERTAIN MATHEI'1ATICAL FU:--JCTIONS.

10
20
30
40
70
80
90

DEF FNACXl = ABSCINTCXll
INPUT A, B, C
GOSUB 100
LET A= FNACAl: LET B FNACBl: LET C
PRINT
GOSUB 100
STOP

FN.ACCl

100 REM -- THIS SUBROUTINE PRINTS THE SOLUTIONS OF
101 REM -- EQUATION AXt2 + BX + C 0·
120
13:21

PRINT "THE EQUATION IS: "A"*Xt2 + "B"*X + "C
LET D = B*B-4*A*C

140 IF D<>0 THEN 170
150
16 0

PRINT "ONLY ONE SOLUTION* X=" -B/C2*Al
RETURN

17 0 IF D<0 THEN 200
180 PRINT "TW:::l SOLUTIONS:": PRINT
185 PRINT "X=" C-B+SQRCDll/C2*A) " AND"
186 PRINT "X=" C-B-SQRCDll/C2*Al
190 RETURN
202! PRINT "IMAGINARY SOLUTIONS:": PRINT
201 PRINT "X= C" -B/C2*Al "," SQRC-Dl/C2*A) ") AND"
203
210

PRINT "X= C" -B/C2*A) "," -SQRC-Dl/C2*Al ")"
RETURN

300 END

RU:--J
?1, .5, -.5
THE EQUATION IS: 1 *Xt2 + .5 *X + -.5
TWO SOLUTIONS:

X= • 5
X=- 1

AND

THE EQUATION IS: 1 *Xt2 + 0 *X+
IMAGINARY SOLUTIONS:

X=
X=

0 > 1
0 >- 1

AND

STOP AT LINE 90
READY

RUN
?2, 4, 6
THE EQUATION IS: 2 *Xt 2 + 4 *X + 6
IMAGINARY SOLUTIONS:

X= C- 1 , 1 • 4 14 2 14 .1:\ND
X= C - 1 , - 1 • 4 1 4 2 14

THE EQUATION IS: 2 *Xt2 + 4 *X+ 6
IMAGINARY SOLUTiONS:

X= C - 1 , 1 • 4 1 4 2 1 4 AND
X= C - 1 , - 1 • 4 1 4 2 14 l

STO? AT LINE 90
READY

9-7

This program computes the amount of interest, principal,

balance and monthly payments for a given loan. It employs a

user-defined function in line 5 and a DIMension statement in

line 10.
7

5 DEF FNTCX) = INTCX*100+.5)/100
10 DIM PC20)
20 FOR I = 1 TO 20
30 READ PCI)
40 NEXT I
45 PRINT
50 PRINT "ENTER AMOUNT OF LOAN
60 INPUT L
70 FOR I 1 TO 20
80 IF L <= PCI) THEN 100
90 NEXT I

100 LET R
101 PRINT
103 PRINT "MONTHLY PAYMENT =$";R
104 PRINT

"; ;

-- 10 5
106

PRINT
PRINT

"FINANCE","APPLIED TO","CLOSING"
"CHARGE", "BALANCE", "BALANCE"

L 11 1
112
11 3

LET
LET
LET

A
T 0
N 0

LET F 115 • 01*L
LET Q 120 R-F
LET T 125 T+F
LET N 126 N+ 1
LET L 130 L-Q

140 IF L >= 0 THEN 180
150 LET Q L+R
160 LET L = 0
180 PRINT FNTCF), FNTCQ), FNTCL)
190 IF L > 0 THEN 115
193 PRINT: PRINT
196 PRINT N; "PAYMENTS"

-197 PRINT "TOTAL FINANCE CHARGE = $" FNTC T>
-198 PRINT "OVERALL% OF LOAN=" FNTCTIA*100);"%"
_199 PRINT "PERSONAL LOAN EQUIVALENT=" FNTC 12*T/CNHlH100);"%"

200 PRINT
210 STOP
215 DATA 200, 300, 400, 500, 720, 840, 960, 1080, 1200
216 DATA 1320, 1440, 1560, 1680, 1800, 1920, 2040} 2160
217 DATA 2280, 2400
218 DATA 1E100
220 END

9-8

RUN

ENTER AMOUNT OF LOAN ?100

MONTHLY PAYMENT =$ 10

FINANCE APPLIED TO CLOSING
CHARGE BALANCE BALANCE

1 9 9 1
• 9 1 9·09 8 1. 9 1
• 82 9. 18 72-73
-73 9. 27 63-46
• 6 3 9-37 54-09
-54 9-46 IJ4 • 6 3
o45 9·55 35-08
-35 9·65 25-43
.25 9. 7 5 15·65
-16 9 • 8LJ 5-84
·06 5·9 Cl

11 PAYMENTS
TOTAL FINANCE CHARGE =l 5·9
OVERALL % OF LOAN = 5·9 %
PERSONAL LOAN EQUIVALENT = 6·43 %

STOP AT LINE 210
READY

Program 10:

A DIMension statement at line 20 initializes and reserves

storage for the values of two subscripted variables. Variable

A represents a one-dimensional, and variable B a two-dimensional,

array.

10 REM -- PROGRAM DEMONSTRATING RE.ADI NG OF
15 REM SUBSCRIPTED VARIABLES.
20 DIM AC 5), BC2,3)
25 PRINT "AC I) WHERE A= 1 TO 5:"
30 FOR I = 1 TO 5
35 READ AC!): PRINT AC I) ;
40 NEXT I
45 PRINT: PRINT
50 PRINT "BCI,J) WHERE I= 1 TO 2"
55 PRINT .. AND cJ= J TO 3:"
60 FOR I = 1 TO 2: PRINT
65 FOR J = 1 TO 3
70 READ BCI,J): PRINT BCI,J);
75 NEXT J: NEXT I
80 DATA 1, 2, 3, LJ, 5,
85 DATA 1 1' 12, 13, 2 1' 22, 23
90 PRINT
99 END

9-9

RU:J
A< I) WHERE A= 1 TO 5:

2 3 4 5

B< I, J) vJHERE I= 1 TO 2
AND J= 1 TO 3:

1 1 12 13
2 1 22 23

STOP AT LINE 99
READY

Program 11:

The DIMension statement in line 20 forms a 7 by ll data

array. Values are assigned lines 45 and 50 to column 0 and

row 0; the remaining values are zero. The array is printed

out utilizing two loops within lines 55 to 70.

10 REM -- A MATRIX C!-!ECK PROGRAM.
20 DIM A<6, 10)
25 FOR I = 0 TO 6
30 FOR J = 0 TO 10: LET A< I, J) 0
35 NEXT J
40 NEXT I
45 FOR I 0 TO 6: LET A<I,0) I
50 FOR J = 0 TO 10: LET A< 0, J) J
55 PRINT A<I,J);
60 NEXT J
65 PRINT
70 NEXT
75 END

RUN
0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

STOP AT LINE 75
READY

9-10

APPENDIX A

~ IMPLEMENTATION NOTES

A.l COMPARISON WITH DARTMOUTH BASIC

BASIC as implemented on the PDP-11 corresponds with Dartmouth

BASIC except as noted below.

A.l.l Special Features

1. Use of BASIC statements in immediate mode.

2. Ability to use any BASIC command (RUN, LIST, etc.)
in deferred mode (with a line number).

3. Recursive subroutine calls.

4. User programs can be halted (with CTRL/P) without
clearing of variables. These can be examined with
the PRINT statement.

5. Multiple statement lines.

6. Array names consisting of a letter followed by a
number.

A.l.2 Restrictions

1. No TAB function in PRINT.

2. No ON statement.

3. No MATrix operations.

4. No character string manipulation.

5. All array variables must be declared in a DIM state­
ment before being used.

6. No expressions of the form (-A)tB. The variable A
must be positive and non-zero.

A.2 USER STORAGE REQUIREMENTS

BASIC can be run in the minimal 4K PDP-11/20 configuration. With

the BASIC program in core, and deducting space reserved for the

Bootstrap and Absolute Loaders, approximately 450 words are left for

total user storage (program storage plus working storage) . 1

Any additional 4K core memory increments are available for user

storage unless restricted at load time (see Chapter 7). A 12K

configuration would normally provide 8K plus approximately 450

words of user storage.

1Approximately 1000 words are available if BASIC's arithmetic
functions are deleted at load time.

A-1

--·--------

A.3 FACTORS AFFECTING PROGRAM SIZE

BASIC statement names (LET, PRINT, etc.) are stored as single byte

codes with values ranging from 140 to 174 8 . They are reconstructed

for output. Any spaces typed within statement names are ignored,

e.g., LE T is accepted as LET.

The text of a user program is stored two characters per

word. Beyond the space requirement for statement names and

text, BASIC program size is dependent on the following:

1. The number and size of arrays.

2. The number of nested FOR loops.

3. The number of nested subroutines.

4. The number of variables.

5. The number of user-defined functions.

Storage required by the above numbered elements can be

estimated as follows:

1. Each array requires a two-word entry for the
array identifier and three words of storage
for each array element.

2. Each FOR-NEXT loop requires eight storage
words. This space is returned as each loop
finishes cycling.

3. Each subroutine requires one word during
operation.

4. Each simple variable (one- or two-character)
requires five storage words.

5. User-defined functions require three storage
words plus the number of words required for
the function definition.

A.4 IMMEDIATE MODE STATEMENTS

The following BASIC statements can be executed in immediate mode:

LET

PRINT

READ

RESTORE

INPUT

GOTO

GOSUB

RETURN

A-2

~~

The LET, PRINT, and INPUT statements can be used independently

to perform on-line calculations. The remaining statements, however,

are used in debugging deferred mode programs and executing them in

special ways (GOTO, for example, can be used to begin program execu­

tion at a point other than the first statement) .

A.5 COMMANDS IN DEFERRED MODE

PDP-11 BASIC makes no distinction between statements, such as LET

and DATA, and what are usually classified as commands, e.g., RUN,

LIST, etc. All statements in the command category (RUN, LIST, DELETE,

SAVE, and OLD) can be coded in deferred mode, i.e., with a preceding

line number. When a deferred mode command is encountered in a user

program it is executed and BASIC returns to command mode. RUN is an

exception: it causes a program to be re-executed from the lowest

numbered statement each time it is encountered.

A. 6 STORAGE OVERFLOW

Storage overflow can be caused by a user program being too large or

generating more data than can be stored in the program storage area.

An overflow is indicated by error code 0; a fatal error.

Storage overflow can be caused by any of the following.

1.

2.

3.

Too many variables and/or arrays.

Too many nested FOR-NEXT loops,

Illegal use of the DEF statement. For example:

l.f,J DEF FNA(X) = Xt2 + FNA(X)

which causes an infinite amount of storage to
be required whenever FNA is used in an expres­
sion.

4. Excessive nesting of GOSUB statements. For
example:

10 LET Y = 1
20 INPUT X
30 GO SUB 100
40 PRINT x; "! -··· y - ,
50 STOP
90 REM -- CALCULATE X FACTORIAL·

100 LET X = x- 1
110 IF X>1 THEN GO SUB 100
120 LET Y = Y*X
130 LET X = X+1
14.0 RETURN
150 END

A-3

RUN
? ..l.f2.

10 ! _362880

STOP AT LINE 50
READY

RUN
?4500

ERROR
READY

0 AT LINE 110

The program above ran successfully until the value assigned to X

became so large that more data was generated than could be stored,

causing the fatal error condition.

In order to conserve space to allow a program to execute proper­

ly, the following actions should be taken.

1. Remove all excess spaces within the program. Since
spaces are ignored in BASIC, they do not affect the
operation of the program, only its reading ease for
the user. For example:

etc.

10LETY= 1
20Il\JPUTX

2. Remove all REM statements. REM statements consume
core and are not executed, hence they can be eliminated
to make room for executable statements.

3. Use multiple statement lines. Statements can be com­
bined on a single line, separated only by a colon,
thereby eliminating the extra character spaces con­
sumed by the line numbers and spaces. For example:

120LETY=Y*X:LETX=X+1

instead of:

120 LET Y Y*X
130 LET X X+l

4. Use subroutines and user-defined functions to perform
repetitive processes instead of duplicating groups
of statements throughout the program. This is especial­
ly important for long programs.

5. Use common expressions to eliminate the need to cal­
culate the same values more than once. For example:

10LETZ=A+B*C:LETY=3*Z-2*Z

instead of:

A-4

6. A final alternative would be to segment the program,
i.e., make two or more programs out of the one pro­
gram.

Storage overflow can cause the latter portion of the user program

to be destroyed. For example, consider the following (we use an

illegal DEF statement to produce an infinite amount of storage to be

required and three RESTORE statements to represent subsequent program

statements).

10 DEF FNACX) = Xt2 + FNACX)
20 PRINT FNA<9)
30 RESTORE
40 RESTORE
50 RESTORE

RUN

ERROR
READY

0 AT LINE 20

which causes an infinite amount of storage to be required whenever

FNA is used in line 20.

After an overflow, LIST the program to determine whether it

is still intact.

LIST

10 DEF FNACX) = Xt2 + FNACX)
2rZI PRINT FNAC 9)
30 RESTORE
40 RESTORE
8&ASV&©<HD&2HBREMtP
2
READY

(CTRL/P was typed here)

If the program already exists on paper tape (it has been pre­

viously SAVEd), then reload it with the OLD command. Otherwise,

lengthy programs should then be SAVEd and then read in using the

OLD command (OLD restores core), or, if the program is not too

large, restart BASIC at location zero (which also restores core)

and retype the program.

When the program is SAVEd on the low-speed punch, the punch

may be stopped as soon as the garbled text starts listing on the

teleprinter. If the high-speed punch is used, you must wait for

the punch to stop since there is no visible means to see when the

incorrect text starts. However, the OLD process will stop with an

error message as soon as the incorrect text is encountered.

A-5

After reading in or retyping the program, it can be modified as

suggested above so that it requires less core or generates less data.

In addition, any missing statements must be retyped.

A.7 EXPONENTIATION

As long as the extended functions (in particular, LOG and EXP) have

not been deleted, PDP-11 BASIC always performs exponentiation with LOG

and EXP. Thus, small inaccuracies are introduced even if an integer

is being raised to an integral power. For example:

PRINT 212-4
·2235174E-7

shows that 2+2 is calculated as

4.00000002235174

This will cause the following program to run as shown:

10 IF 2f2 = 4 THEN 20
11 STOP
20 STOP
RUN

STOP AT LINE 11
READY

Since 2+2 is not exactly calculated as 4, the THEN 20 portion of the

IF-THEN is not executed. However, the statement PRINT 2+2 will print

a precise 4 as a result. This is because at most eight decimal places

are printed and, to this precision, 2+2 is 4.

If this problem arises, there are several methods available for

coping with the proglem. If an integer is being raised to an integer

power, use INT to discard the fractional part:

10 IF INT<2f2) = 4 THEN 20
11 STOP
20 STOP
RUN

STOP AT LINE 20
READY

Another method is to do an "almost equal" compare by writing an IF

as:

IF ABS(X+N-Y) <= .lE-6 THEN 20

A-6

-~-------

APPENDIX B

STATEMENTS, COMMANDS, FUNCTIONS

B.l STATEMENTS

Statement Example of Form

LET LET Sl = expression

READ READ Vl,V2, •.• ,Vn

DATA DATA Nl,N2, ... ,Nn

PRINT PRINT {list}

GOTO GOTO n

IF THEN IF Sl r S2 THEN n

IF Sl r S2 THEN stmt

IF-GOTO IF Sl r S2 GOTO n

FOR-TO FOR V=El to E2 STEP E3

NEXT NEXT V

DIM DIM V (S)

B-1

Explanation

Assign the value of the expres­
sion to the variable Sl.

Variables Vl through Vn are as­
signed to the value of the cor­
responding constants in the
DATA string.

Constants Nl through Nn are to
be associated with correspond­
ing variables in a READ state­
ment.

Output elements of list to Tele­
type in accordance with format
control characters (, or ;) ;
evaluate expressions, if any,
and print constant values.

Transfer control to line n and
continue execution from there.

If the relationship r between
the formulas or constants Sl
and S2 is true then transfer
control to line n, or execute
the statement; if not, con­
tinue in reqular sequence.

Same as IF-THEN n.

Used to implement loops; the
variable V is set equal to the
expression El. From this point
the loop cycle is completed fol­
lowing which V is incremented
after each cycle by E3 until
its value is greater than or
equal to E2. If STEP E3 is
omitted, E3 is assumed to be
+1.

Used to return to the FOR state­
ment and execute the loop again
until V is greater than or equal
to E2.

Enables the user to create a
table or array with the speci­
fied number of elements where
V is the variable name and S
is the maximum subscript value.
Any number of arrays can be di­
mensioned in a single DIM state­
ment, separated by commas. (S
starts at 0).

APPENDIX B (Cont'd)

Statement Example of Form

GO SUB GOSUB n

RETURN RETURN

RANDOMIZE RANDOMIZE

INPUT INPUT Vl,V2, ... ,Vn

REMARK REM

RESTORE RESTORE

DEFINE DEF FNA(X)=F(X)

STOP STOP

END END

B.2 EDIT AND CONTROL COMMANDS

Explanation

Allows the user to enter a sub­
routine at several points in the
program. Control transfers to
line n.

Must be at the end of each sub­
routine to enable control to be
transferred to the statement fol­
lowing the matching GOSUB.

Enables the user to obtain an
unreproducible random number se­
quence in a program using the
RND function.

Causes typeout of a ? to the user,
waits for the user to supply the
values of the variables Vl through
Vn.

When typed as the first three
letters of a line allows typing
of remarks within the program.

Sets pointer back to the begin­
ning of the string of DATA
values.

The user may define his own func­
tions to be called within his
program by putting a DEF state­
ment at the beginning of a pro­
gram. The function name must
begin with FN and have three
letters. The function is then
equated to an expression F(X)
which must be only one line long.
Multiple arguments are not
allowed.

Halts program execution (BASIC
prints STOP AT LINE xxx and READY.

Last statement (highest numbered)
in every program; signals end of
the program coding.

Several commands for editing BASIC programs and for controlling

their execution enable you to: delete lines, list your program,

save programs on paper tape, load old programs from paper tape,

etc.

B-2

B.3 COMMANDS

The commands may be given at any time and are not preceded by a

line number.

Command

DELETE n

DELETE n,m

LIST

LIST n

LIST n,m

OLD

RUN

SAVE

CTRL/P

CTRL/U

RUB OUT

Action

Delete the line with line number n, an
alternate form is to type the line number
and the RETURN key.

Delete the lines with line numbers n
through m inclusive.

List the entire program on the teleprinter.

List line n.

List lines n through m inclusive.

BASIC loads a paper tape program.

Execute the program currently in core.

Save the contents of user storage on
paper tape.

Stops a running program, prints t and
returns to command mode.

Erases an entire input line

Erases single character each time key is
depressed.

B.4 ARITHMETIC OPERATORS

Symbol
In BASIC Example Meaning

t AtB Exponentiation

* A*B Multiplication

I A/B Division

+ A+B Addition

A-B Subtraction

A unary minus (negative number) has same priority as
normal addition or subtraction.

B-3

Priority

First

Second

Third

B.S LOGICAL OPERATORS

BASIC Mathematical BASIC
Symbol Symbol Example Meaning

A=B A equal to B

< < A<B A less than B

<= < A<=B A less than or equal to

> > A>B A greater than B

>= > A>=B A greater than or

<> 'I <> A not equal to B.

B.6 MATHEMATICAL FUNCTIONS

Function

SIN(x)

COS(x)

ATN(x)

SQR(x)

EXP(x)

LOG(x)

ABS (x)

INT (x)

RND(x)

SGN(x)

FNa (x)

EXF(x)

Meaning

1sine of x (x is expressed in radians)

1cosine of x (x is expressed in radians)

1Arctangent of x is returned as an angle
in radians in range ±n/2

1
Square root of x

2 ' d h e ralse to t e x power

:l Natural logarithm of x

Absolute value of x

Truncate fraction part of x (truncates
to largest integer not greater than x)

Generate random number between 0 and 1

Sign of x (+1 for positive X; 0 for
X=O; -1 for negative x)

User-defined function; a is any letter;
used in DEF statement

External Function (see Chapter 8)

1Extended function; may be deleted during initial dialogue.

2Also deletable.

B-4

equal

B

to B

APPENDIX C

ASCII CHARACTER SET

The legal character set in BASIC is:

BLANK (SPACE)
A-Z
0-9
* I - + t = > < • , ; (l " :

Any other non-CTRL ASCII character with an octal value less than

140 is allowed between quotes in a PRINT statement.

EVEN
PARITY

BIT

0

l

0

l

0
0
l
l

0
0

l
0

l

l

0

l
0

0

l

0

l

l

r

7-BIT
OCTAL
CODE

'

000
001

002

003

004

005
006
007
010

013
014

016

017

020
021

022

023

024

025

026

~) '

tl\'2

CHARACTER

~~

NUL
SOH

STX

ETX

EOT

ENQ
ACK
BEL
BS

HT
LF

VT
FF

CR

so

SI

DLE
DCl

DC2

DC3

DC4

NAK

SYN

13~

1 !')I I)

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.
START OF HEADING; ALSO SOM, START OF
MESSAGE, CONTROL A,
START OF TEXT; ALSO EOA, END OF
ADDRESS, CONTROL B,
END OF TEXT; ALSO EOM, END OF MESSAGE,
CONTROL C,
END OF TRANSMISSION(END): SHUTS OFF
TWX MACHINES, CONTROL D,
ENQUIRY(ENQRY); ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.
RINGS THE BELL. CONTROL G.
BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.
LINE FEED OR LINE SPACE (NEW LINE) :
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.
VERTICAL TAB (VTAB). CONTROL K.
FORM FEED TO TOP OF NEXT PAGE (PAGE) .
CONTROL I.
CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M.
SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.
SHIFT IN: CHANGES RIBBON COLOR TO BLACK.
CONTROL 0.
DATA LINK ESCAPE. CONTROL P (DCO).
DEVICE CONTROL l, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON).
DEVICE CONTROL 2, TURNS PUNCH OR AUXI­
LIARY ON. CONTROL R (TAPE, AUX ON).
DEVICE CONTROL 3, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).
DEVICE CONTROL 4. TURNS PUNCH OR AUXI­
LIARY OFF. CONTROL T (TAPE, AUX OFF).
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.
SYNCHRONOUS IDLE (SYNC). CONTROL V.

C-1

EVEN
PARITY

BIT

0

0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1

7-BIT
OCTAL
CODE

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
llO
1ll
ll2
ll3
114
ll5
ll6
ll7
120
121

CHARACTER

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us
SP

II

$
%
&

(
)

*
+

I
0
1
2
3
4
5
6
7
8
9

<
=
>
?
@

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

Q

REMARKS

END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CAN (CANCL). CONTROL X.
END OF MEDIUM. CONTROL Y.
SUBSTITUTE. CONTROL Z.
ESCAPE. PREFIX. CONTROL SHIFT K.
FILE SEPARATOR. CONTROL SHIFT L.
GROUP SEPARATOR. CONTROL SHIFT M.
RECORD SEPARATOR. CONTROL SHIFT N.
UNIT SEPARATOR, CONTROL SHIFT 0.
SPACE.

ACCENT ACUTE OR APOSTROPHE.

C-2

/

~

EVEN 7-BIT
PARITY OCTAL

BIT CODE CHARACTER REMARKS

1 122 R
0 123 s
1 124 T
0 125 u
0 126 v
1 127 w
1 130 X
0 131 y

0 132 z
1 133 [SHIFT K
0 134 ' SHIFT L
1 135] SHIFT M
1 136 t SHIFT N } See footnote
0 137 +- SHIFT 0
0 140 ACCENT GRAVE.
0 175 THIS CODE GENERATED BY ALT MODE.
0 176 THIS CODE GENERATED BY ESC KEY (IF PRESENT)
1 177 DEL DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0

1 160 p
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 X

1 171 y
1 172 z
0 173 {
1 174 I

On some devices, the up-arrow (t) and left-arrow (+-) are replaced by
the circumflex (A) and underline () , respectively.

C-3

----------~-~ --------------------

APPENDIX D

THE BOOTSTRAP AND ABSOLUTE LOADERS

D.l THE BOOTSTRAP LOADER

The Bootstrap Loader should be toggled into the highest available

core memory bank.

Location Instruction

01
xx7744 016701
xx7746 000026
xx77 50 012702
xx7752 000352
xx7754 005211
xx7756 105711

~ xx7~~0 100376
xx77 2 116162
xx7764 000002
xx7766 n14oo
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 yyyyyy~
D1 Ill ?'-o

xx represents the highest available core memory bank. For example,

the first location of the Loader would be one of the following,

depending on memory size, and xx in all subsequent locations would

be the same as the first.

Location

017744
037744
057744 (~g~::
137744
157744

Memory Bank

0
1
2

--·--r···-
4
5
6

Memory Size

4K
BK

12K
16K·-~
20i<"'""
24K
28K

The contents of location xx7776 (yyyyyy) in the Instruction

column above should c~~ain the device status register address of

the paper tape reader to be used when loading the bootstrap formatted

tape, specified as follows:

Teletype Paper Tape Reader

High-Speed Paper Tape Reader

D-1

177560

177550

Figure D-1. Loading and Verifying the Bootstrap Loader

D.2 THE ABSOLUTE LOADER

D.2.1 Loading the Absolute Loader

The Bootstrap Loader is used to load the Absolute Loader into

core (see Figure D-2). The Absolute Loader occupies locations xx7474
through xx7743, and its starting address is xx7500.

D.2.2 Loading with the Absolute Loader

When using the Absolute Loader, there are three types of loads

available: normal, relocated to specific address, and continued

relocation (see Figure D-3).

Optional switch register settings for the three types of loads
are listed below:

Type of Load

Normal

Relocated - continue loading where
left off

Relocated - load in specified area
of core

D-2

Switch Register
Bits 1-14 Bits 0

(ignored)

0

nnnnn
(specified address)

0

l

l

Figure D-2.

Code 351 m us! be
over reader sensors

11-0067

Loading BASIC Into Core

D-3

-·

•

APPENDIX E

OPERATING THE TELETYPE AND
HIGH-SPEED PAPER TAPE READER/PUNCH

E.l OPERATING THE TELETYPE

The ASR33 Teletype is the basic input/output device for PDP-11 com­

puters. It consists of a printer, keyboard, paper tape reader,

and paper tape punch, all of which can be used either on-line

under program control or off-line. The Teletype controls (Figure

E-1) are described as they apply to the operation of the computer.

E.l.l Power Controls

LINE

OFF

LOCAL

OFF

REL.

B. SP.

ON

START -
STOP­
FREE-

E.l.2 Printer

The Teletype is energized and connected
to the computer as an input/output device,
under computer control.

The Teletype is de-energized.

The Teletype is energized for off-line
operation.

OFF

LINE 0 LOCAL

Figure E-1. ASR33 Teletype Console

The printer provides a typed copy of input and output at 10

characters per second, maximum.

E-1

E.l. 3 Keyboard

The Teletype keyboard is similar to a typewriter keyboard. How­

ever, certain operational functions are shown on the upper part

of some of the keytops. These functions are activated by holding

down the CTRL key while depressing the desired key. For example,

when using the Text Editor, CTRL/U causes Editor to ignore the

current line of text.

Although the left and right square brackets are not visible

on the keyboard keytops, they are shown in Figure E-2 and are

generated by typing SHIFT/K and SHIFT/M, respectively. The ALT

MODE key is identified as ESC (ESCape) on some keyboards.

QC)C)C)C)C)QCDCDQC)O®
@G)Qcv~(f)QQGJCD®@@
8QeJGJCV~QQCD~CJ®88
80QQQQCDCDCJCJCD8

SPACE

Figure E-2. ASR33 Teletype Keyboard

E.l.4 Paper Tape Reader

The paper tape reader is used to read data punched on eight-channel

perforated paper tape at a rate of 10 characters per second maximum.

The reader controls are shown in Figure E-1 and described below.

START

STOP

FREE

Activates the reader; reader sprocket is
engaged and operative.

Deactivates the reader; reader sprocket
wheel is engaged but not operative.

Deactivates the reader; reader sprocket
wheel is disengaged.

The following procedure describes how to properly position paper

tape in the low-speed reader.

a. Raise the tape retainer cover

b. Set reader control to FREE

c. Position the leader portion of the tape over the read
pens with the sprocket .(feed) holes over the sprocket
(feed) wheel and with the arrow (printed or cut) point­
ing outward.

E-2

d. Close the tape retainer cover; tape should move
freely.

e. Set reader control to STOP.

f. Set reader control to START, and the tape will be
read into core.

E.l.S Paper Tape Punch

The paper tape punch is used to perforate eight-channel rolled

oiled paper tape at a maximum rate of 10 characters per second.

The punch controls are shown in Figure E-1 and described below.

RELease

B.SP

ON

OFF

Blank leader/trailer

l. Turning the

2. Turning the

3. Typing the

4. Turning the

5. Turning the

Disengages the tape to allow tape
removal or loading.

Backspaces the tape one space for
each firm depression of the B.SP
button.

Activates the punch.

Deactivates the punch.

tape is generated by:

TTY switch to LOCAL

LSP on

HERE IS key

LSP off

TTY switch to LINE

E.2 OPERATING THE HIGH-SPEED TAPE READER AND PUNCH UNITS

A high-speed paper tape reader and punch unit is pictured in

Figure E-3 and descriptions of the reader and punch units follow.

E.2.l Reader Unit

The high-speed paper tape reader is used to read data from eight­

channel fan-folded (non-oiled) perforated paper tape photoelectric­

ally at a maximum rate of 300 characters per second. Primary

power is applied to the reader when the computer POWER switch is

turned on. The reader is under program control. However, tape

can be advanced past the photoelectric sensors without causing

input by pressing the reader FEED button (see Figure l-4).

E.2.2 Punch Unit

The high-speed paper tape punch is used to record computer output

on eight-channel fan-folded paper tape at a maximum rate of 50

E-3

characters per second. All characters are punched under program

control from the computer. Blank tape (feed holes only, no data)

may be produced by pressing the FEED button (see Figure E-3).

Primary power is available to the punch when the computer POWER

switch is turned on.

PAPER TAPE OFF LINE

FEED

ON LINE

FEED

Figure E-3. High-Speed Paper Tape Reader and Punch

Paper tape is loaded into the reader as explained below.

l. Raise tape retainer cover.

2. Put tape into right-hand bin with channel one of the
tape toward the rear of the bin.

3. Place several folds of blank tape through the reader
and into the left-hand bin.

4. Place the tape over the reader head with feed holes
engaged in the teeth of the sprocket wheel.

5. Close the tape retainer cover.

6. Depress the tape feed button until leader tape is
over the reader head.

CAUTION

Oiled paper tape should not be used in the high­
speed reader - oil collects dust and dirt which
can cause reader errors.

While the FEED button is depressed, the punch produces feed-hole­

only punched tape for leader/trailer purposes.

E-4

INDEX

Absolute Loader, 7-l, D-2
ABS(X) (absolute value)

function, 4-l, 4-6
Addition, 2-6
Algebraic expression in PRINT

statement, 3-3
Angle brackets, 1-l
Arithmetic functions, 2-7
Arithmetic operations, 2-5
priority, 2-5

Arithmetic operators, 2-6, B-3
addition, 2-6
division, 2-6
exponentiation, 2-6
multiplication, 2-6
subtraction, 2-6

Array variables, 3-18
Arrays,
data, 3-18
generating, 3-19
storage requirements, A-2
two-dimensional, 3-21

ASCII character set, C-1, C-2
Assembly language programs, 8-l
ATN(X) (arctangent) function, 4-l,

4-3
Available routines, 8-6

Braces, l-2
Brackets,
angle, 1-l
square, 1-l

Branches,
conditional, 3-15
unconditional, 3-14

Bootstrap Loader, D-1

character Strings in PRINT
statements, 3-3

Comma in PRINT statement, 3-2
Commands

BASIC, 5-l
deferred mode, A-3
DELETE, l-3, 5-l, 5-3
Edit and control, B-2
LIST, 5-l, 5-3
OLD, 5-2, 5-3, A-5
RUN, 2-3, 5-3, A-3
SAVE, 5-2, 5-3

Conditional branches, 3-15
Conditional statement, 3-16
Constants, 2-4
Control commands, B-2, B-3
Control variable, 3-5, 3-7
Conversion to
base e, 4-5
base 10, 4-5
radian measure, 4-2

X-1

Corrections, keyboard error, 1-2
COS (X) (cosine) function, 4-l,

4-2
CTRL/P (control P) , 5-3
CTRL/U (control U) , l-2

Data
arrays, 3-18
input, 2-4

DATA statement, 3-8, 9-3
Debugging user programs, 2-3
Deferred mode, l-2

commands, A-3
DEFine statement, 4-10, A-5
DELETE command, l-3, 5-l
Demonstration programs, 9-l
DIMension statement, 3-19, 9-8
Division, 2-6
Documentation conventions, 1-l
Dummy variables, 4-10

Edit commands, B-2, B-3
Editing program, l-3
END statement, 2-3
Erasing lines and programs, 5-l
Error

code, 6-l
corrections, l-2
messages, l-3, 6-l

Errors,
fatal, 6-l
nonfatal, 6-l
typing, l-2

EVAL routine, 8-3
Evaluating expressions, 2-5, 2-6
EXF function, 8-l
recursive calls, 8-3

EXP (X) (exponential) function, 4-l,
4-4

Exponential format, 2-4
Exponentiation, 2-6, 4-l
Expressions, 2-5, A-4
evaluating, 2-5
in PRINT statements, 3-3

External
function (EXF) , 8-l
program, 8-2
routine requirements, 8-3

Fatal errors, 6-l
Format of function call, 8-l
Formatting printout, 3-3
FOR-NEXT loop, 3-7, 3-15
storage requi ement, A-2

FOR-NEXT statement, 3-5,9-1,9-3
FOR Statement, 3-5
nested, 3-7

Function calls
format, 8-1
nested, 8-6

Functions,
arithmetic, 2-7
extended, 4-1
mathematical, 4-1
user-defined, 4-10, 9-8, A-4

Functions, Mathematical, 4-1
ABS(X), 4-1, 4-6
ATN{X), 4-1, 4-3
COS(X), 4-1, 4-2
EXP{X), 4-1, 4-4
INT(X), 4-1, 4-6
LOG{X) I 4-1, 4-5
RND(X) I 4-l, 4-7
SGN{X), 4-l, 4-10
SIN (X) I 4-1 I 4-2
SQR(X) I 4-l, 4-4

Generating arrays, 3-19
GOSUB statement, 3-12, 9-6
GOTO statement, 3-14, A-3

High-speed punch, 5-2
High-speed tape reader and
punch, E-3

IF statement, 3-15
IF-GOTO statement, 3-15
IF-THEN statement, 3-15
Immediate mode, 1-2, A-2
Initial dialogue, 7-1

long form, 7-2
option, 7-1

Input, data, 2-4
INPUT statement, 3-11, 9-6, A-3
INT (X) (integer) function, 4-1, 4-6,

9-41 9-5
Internal routines, 8-5

Keyboard error corrections, 1-2
Keyboard, Teletype, E-2

LET statement, 3-1, A-3
Line numbers, 2-1
Lines,
multiple statement, 2-1
single statement, 2-1

LIST statement, 5-l, A-5
Loading
data, 1-1
EXF program, 7-2
and starting BASIC, 6-1

Loader,
Absolute, D-2
Bootstrap, D-1

Logical operators, 3-16, B-4
LOG(X) (logarithm) function,

4-11 4-5

Long form initial dialogue, 7-2
Loops,

FOR-NEXT, 3-5
nested, 4-7, 3-22
program, 3-5

Low-speed punch, 5-2

Mathematical
functions, 4-1, B-4
operations, 4-1

Messages, error, 1-3, 6-1
Mode,
deferred, 1-2
immediate, 1-2

Multiple definitions, 4-12
Multiple statement lines, 2-1

3-15, A-4
Multiplication, 2-6

Nested
FOR statements, 3-7
function calls, 8-6
loops, 3-7, 3-22
parentheses, 2-5
subroutines, 3-13

NEXT statement, 3-1, 3-5
Non-fatal errors, 6-2
Numbers,
exponential format, 2-4
line, 2-1

OLD command, 5-2, A-5
Operating Teletype, E-1
Operations, mathematical, 4-1
Operators,
arithmetic, B-3
logical, 3-16, B-4

Option initial dialogue, 7-1

tP, see CTRL/P
Paper Tape Punch, E-3
Paper Tape Reader, E-2
Parentheses, 2-5
nested, 2-5

Printer, Teletype, E-1
Printing lines and programs, 5-l
PRINT statement, 3-1, 9-1, A-3
algebraic expression, 3-3
calculations, 3-1
character strings, 3-3
comma, 3-2
expressions, 3-4
quotation marks, 3-3
semicolon, 3-3

Print zones, 3-2
Priority of arithmetic operations,

2-5
Program editing, 1-3
Program loops, 3-5
nested, 3-7

X-2

; ...

Program size, factors atfect1ng,
A-2
array, A-2
FOR-NEXT loop, A-2
subroutine, A-2
user-defined function, A-2
variable, A-2

Programs, demonstration, 9-1

Question marks
data input, 2-4
initial dialogue, 7-2
INPUT statement, 3-11

Quotation marks, 3-3

Radian measure, 4-2
conversion to, 4-2

RANDOMIZE statement, 4-9
Random number function, see

RND(X)
Random numbers, 4-7, 4-9
READ statement, 3-8, 9-3
Reading in a user program, 5-3
Recursive EXF calls, 8-3
Register RO, 8-2
REM statements, A-4
Requirements,
external routine, 8-3
user storage, A-1

Restarting BASIC, 7-2
RESTORE statement, 3-10
RETURN key, 1-2, 2-1, 3-11, 7-1
RETURN statement, 3-12, 9-12
RND(X) (random number) function,

4-1, 4-7, 5-3
RUBOUT key, 1-2
RUN command, 2-3, 5-3, A-3

SAVE command, 5-2
Saving user programs, 5-2
Semicolon

in PRINT statement, 3-3
separating text strings, 3-4

SGN (X) (sign) function, 4-1, 4-10
Single statement lines, 2-1
SIN (X) (sine) function, 4-1, 4-2
Special features, 1-4, A-1
array names, 3-18
IF-THEN statement, 3-15
immediate mode, 1-2
multiple statement lines, 2-1
use of RUN, LIST, DELETE, SAVE,

OLD commands in user programs,
5-3

Special functions, 1-4
SQR(X) (square root) function,

4-1, 4-4
Square brackets, 1-1
Statement

DATA, 3-8, 9-3
DEFine, 4-10, A-5
DIMension, 3-19, 9-8

X-3

END, 2-3
FOR-NEXT, 3-5, 9-1
GOSUB, 3-12, 9-6
GOTO, 3-14, A-3
IF, 3-15
IF-GOTO, 3-15
IF-THEN, 3-15
INPUT, 3-11, 9-6, A-3
LET, 3-1, A-3
LIST, 5-l, A-5
NEXT, 3-5
PRINT, 3-1, 9-1, A-3
RANDOMIZE, 4-9
READ, 3-8, 9-3
REMark, 2-2, A-4
RESTORE, 3-10
RETURN, 3-12, 9-6
STOP, 2-3
THEN-GOSUB, 3-17

Statements, B-1, B-2
BASIC, 2-1
conditional, 3-16
immediate mode, A-2

STEP use, 3-3
STOP statement, 2-3
Stopping a run, 5-3
Storage overflow, A-3
Storage requirements, A-1
Subroutines, 3-12, A-4
nested, 3-13
storage requirements, A-2

Subscripted variables, 3-18, 9-9
Subscripts, 3-19
order of, 3-21
zero-filled, 3-21

Subtraction, 2-6

Teletype
controls, E-1
keyboard, E-2
operation, E-1
printer, E-1

THEN-GOSUB statement, 3-17
Transfer address, location 52, 8-4
Typing errors, 1-2

Unconditional branches, 3-14
GOTO, 3-14

User-defined functions, 4-10, 9-8,
A-2, A-4

User program commands, 5-3
User storage requirements, A-1, A-2

Variable,
array, 3-18
control, 3-7
dummy, 4-10
subscripted, 3-18, 9-9

Variables, 2-5
storage requirement, A-2

------~-~ - ---- --~-~~----

•

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes, software problems,
and documentation corrections are pub I ished by Software Information Service in the following
news I etters:

Digital Software News for the PDP-8 and PDP-12

Digital Software News for the PDP-9/15 Family

Digital Software News for the PDP-11

These newsletters contain information to update the cumulative

Software Performance Summary for the PDP-8 and PDP-12

Software Performance Summary for the PDP-9/15 Family

Software Performance Summary for the PDP-11

The appropriate edition of the Software Performance Summary is included in each basic software
kit for new customers. Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use
of Digital's software should be reported to the Software Specialist or Sales Engineer at the
nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary
are available from the Program Library. To place an order, write to:

Program Library
Digital Equipment Corporation
146 Main Street, Building 1-2
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual
requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a
catalog of available programs as well as the DECUSCOPE magazine for its members and non­
members who request it. For further information, please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Building 3-5
Maynard, Massachusetts 01754

------ ··------- --· --

/',
I

•
•

BASIC
Programming Manual
DEC-11-AJPA-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback-- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position.-------------- Date:

Name:------------------ Organization:--------------

Street: ________________ Department:--------------

City:------------State:-------- Zip or Country _______ _

- - -- - - - - -- - - - - - - Fold Here -- ---- - - - - - - -- - - - - - -

- - -- - - - - -- -- Do Not Tear- Fold Here and Staple - -- - - - - - - - - -

BUSINESS REPLY MAIL
NO POST AGE STAMP NECESSARY IF MAILED IN THE UN IT ED ST A H'S

Postage will be paid by:

momoamo
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

- •.

~
d

~

"

---- .. -

