o g
3 TR S TR N e S A T AT T
e _ TR SEA

e
.a\.b.. b i . T

e
=g e

W

b

Foreword

Foreword

The C programming language is probably the most popular in use today. This is because
C has a number of advantage over other languages.

One advantage is that, despite the fact that C is a relatively high-level language, it allows
use of detailed processing notation that is very close to machine language. For this reason,
C is the choice for a wide variety of programming applications, from scientific and technical
calculations, to mechanical control.

The usefulness of a computer depends entirely upon the type of sofiware it is programmed
with. This means that the ideal situation is one in which the computer operator is able
to program the computer to perform specific tasks. The best way to develop such an ability
is through practice in writing and executing your own programs, moving from simple
functions to more complex operations.

The PB-2000C comes with the C programming language built in, offering more power than
ever before in a pocket computer. Now you can learn about all of the features and functions
of the C programming language on a pocket computer that you can take along anywhere,

The procedures outlined in this manual are designed to give you some hands-on experience
with the C programming language built into the Casio PB-2000C pocket computer. Chapter
2 and Chapter 3 provide a variety of actual programs that you can enter and execute, while
gaining some insights into the functions of C. Chapter 4 contains even more sample programs
covering everything from graphic animation to complex technical calculations. After you
work with these samples for awhile, you should soon be well on the way to programming
proficiency, with the ability to creat¢ a whole library of customized, original applications.

* The contents of this manual are sub- ¢ Casio Computer Co., Ltd. assumes no
ject to change without notice. responsibility for any loss or claims by
* Note that other than personal use of third parties which may arise through

this manual without the permission of the use of the PB-2000C.
CASIO is prohibited Under copyright ® Casio Computer Co., Ltd. assumes no

laws. responsibility for any damage or loss
® Unlawful copying of this manual in caused by deletion of data as a result
part or in entirety is expressly for- of malfunction, repairs, or battery
bidden. replacement. Be sure to back up all
¢ Casio Computer Co., Lid. assumes no important data on other media to
responsibility for any damage or loss protect against its loss.

resulting from the use of this manual,

Contents

Contents
FOTEWOI « o v o v ot e e et e ettt tmn et anaaaaaesanesesassaesssansanessaarssiitnrroness it
Part 1 Introduction to the C Language 1
Chapter 1 The Basics of C.... 3
1-1 Introduction 10 C..vur v i i it i aa e aacer s trstaasaansaannenas 4
Early history of €. . i 4
WY €ttt e e 4
Featlres OF €. oottt ittt et e e e e 4
1-2 Learning about C with the PB-2000C. 5
1-3 Meet the PB-2000C inferpreter. oot iirenncnsinnreassntanasssnn-]
Chapter 2 C Interpreter Operation. e nrnriii s 7
2-1 About the C interpreter and editor. it 8
About the € INEEIPIEteT. . ..o o it i et et e 8
About the € editor. . ..ot e o e e 8
2-2 Activating the C funetion. i e 9
To activate the C function. oo e 9
About the function Key MeEnUS. o it 9
Function key menu commands used in C...... il 10
2-3 Interpreter displays....... ... e 13
51110) ¢ =1 1= R S R R e 13
Using command-line Operation. i 13
2-4 Handy programming shortcuts.t 17
Using the RECALL function. iiiianiiiiniiiii s 17
Using one-key cOmmMAandS.ttt 17
2-5 Using the editor.. ... i 19
Entering the editOr.ooiiiiiii i 19
MOVINE the CUTSOT. . .ottt i 22
Editing a € PrOZIaml.ottt e 22
Exiting the editor and loading an edited file. 24
2-6 Checking and specifying memory status.t 25
To check the memory StatUS.o oo e 235
To specify the memory Status. o 26
MEMOLY MaD . . ettt e e e 28
MEMOTY COMIEIIES . - . o v v v e vt e e e e et e et ia e a e a s e 29

Contents

2-7

2-8

Chapter 3

31

3-2

3-3

Using the LOAD command................oiiiiierainsnnnnonsnss Ceeeseaean 30
Creating a file. i 30
Loading and eXecuting Programs.oooirmmeiiineeeereeneennnnnnns 32
Execution using batch files.......... i i i i i, 33
To create a batch file........ 34
Executing a batch file. e 35
Using the trace function. i ittt it 37
To enter the TRACE mode.t e ettt 38
To interrrupt execution in the TRACE mode.............................c.... 39
To exit the TRACE mode.ttt i e e eeenaaanannn, 40
Introduction 0 C. ittt ittt ettt ssesannseeonenanennnns 41
Outputting characters. i iiiiiiiiinritanssrennnnnnnnnns 42
Creating a program to output character Striings.ccovveereeeeeennnn... 42
Making your program €asy to read.ttt e 44
Creating a program to output numeric values.o.veirrnnennnnnn.. 44
Integer notation in €. i i e e e 46
Variable types and operations...................c0viiiiaie., Ceiraresianaeens 47
Declaring variable types.t 47
Assigning values to variables. 48
L 4 5 - 49
Entering characters and values............................... Ceceracancannnn 50
Entering a single character from the keyboard. 50
Entering VAIUES. \v ettt e e e 51
Using selection statements.............couuiiiiiiiiiriiiiernrseeennnraoennnns 52
Using the ““if*’ selection statement.ovt oottt 52
A program to solve quadratic equations.ttt e 53
Relational Operators. ittt e 54
Using loops..................... et e it ean ettt 35
Using the ““While’” 1oop. i e 55
Using the #define statement. 0t tuteeeimaneennnnnnnnnn. 57
Incrementing and decrementing.t e 57
Using the ““do~while’ 100p. i it 58
S Using the “for 100D, 58
Nested 100ps.o i e e e, e 60
Inputting and outputting character strings.o it rrnnrnnnnas 62
Standard TURCTIONS. . ..ot it it ittt e e e e e e e 64
Defining functions. i it iiiiii i, .-..05
Function definitions and program modules. i iirerninrnnn. 63
Sample fUNCHONS. e e 66
Recursive function calls. e 68

Contents

3-9

Chapter 4

41
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10

Chapter 5

5-1
5-2
5-3
54
55

5-6

5-7

Local variables and global variables.co o i 68
Local VAADIESttt 68
Global variables.ot e s 69
Pointers and variable storage locations. iiaiiiiii i 70
Entering T A R 70
File input and OULPUL.ooinuitit i 71
Sample PrOGIAINS.onvitiit e s reeeatiaatinseonstatanasteansanae, 73
Prime DUIMIDEIS. oo ovvvvr et innsasssssesoseraassvsoastastansssesnssansens 74
Memory display.oouuerneraaeeaiie sttt 75
Perpetual calemdar. ittt 76
Since CUrve/COSINE CUIve PPrOGIAMN. . ..o v v rnnracaraassraasnnasrsosstiansasses 79
Simple Martian animation.o i 30
More Martian animation.covoeecaersiariraaasastssatiranasaerasrssns 82
Pseudo-random number generator........ ... ccuvcuurisriasrssssaccencnacras 85
APProximation of Pi.......ovveeionieaniii i 87
Mean ANA VAFTAICE. . o\ v v ot vvstananreacsaranenosssasanssossnssnssranssssons 89
Solution of simultaneous linear equations. oiiiirraiiaiansiian, 91
€ TOOEPICIRT . « o v e v e et ttn s anesveaanaacasasnsssnanannnnssoocsstsanesns 23
COTMIIIIEIILS « + « v v e v v e aovameomnanessentsnssnnmsensottsnnsassosoasannsnsssons 94
Reserved WORS. . ..o v n i ieie i ie st etasarsaannaannsnsisssrasanananassnsas 94
Data types and lengths.o e 95
Assigning variable names and function names.cciiiiiiiieean e 95
Data eXPressiOmS.oouuiiiarrreerarrrocsrssasinassoestasstattarssannnas 96
ChAracter COMSLATILS ot vt v e et iae et s bs s o asa s asancea st 96
INteger CONSLAMES.oevtinr e eaana e a o ie e n b 99
Floating-point constants and double precision floating-point constants.......... 100
SEETE COMSTANES . .« v v ove e ets e e v et s e e a e 100
OPETALOTSo it ne oo iaannresrannsssaaannrssssannnrarosossitanssenntosns 100
e i Lo T - 100
CONITOl SIPTCTUNES . o o vt vt ee e eaenensasmacansssossaanssnsassaansasasasssns 103
TN T 111 11 ¢ U R R 103
Compound STALEMENES.\ttt 103
Control structures for jumps and repeats. i 104
Siorage OIS | =
Arrays and POIMIErS. ittt i 108
g -3 -2 R 108
R v e T D S RUPUP UMD S 109

vi

Contents

510

5-11
5-12
5-13

FUnCtions. e 111
main function. 111
Punction type declaration. 0 i 111
Structures and UHIONS. ittt ettt e s e, 113
a1 T) 115
Standard functions. i 116

Chapter 6

Chapter 7

Command Reference., ..ot iinareenere e, 122
LOAD RUN .. s e e e 122
NEW/FLIST/EDIT . ..o e e i 123
TRON L 124
TROFF L 125
Standard Function Reference.t eeenrorrenenennnnn. 126
Input/Output funmction. ittt et antannnnan, 127
L]« 127
felose/getehar o 130
B/ elC . o 131
PULCHAr . 132
PUIC .o e e e e e, 133
DDULC /LS. 134
R ets/PULS. 135
fputs/fread o 136
BWIIe . 137
printf, forint, sprintf. . . 138
scanf, fscanf, sscanf..... 141
LE 18- 143
flush . . 144

vii

Contents
10 Y (=3 4 4 oS 145
T Lo) 0 (= 1 11 1 7= SO PP 146
=5 1 - 1 1o 1 147
Process FUNCHiON. i i ittt isamn e tsnnaman s 149
Lo 81 041 | A PP 149
Break . . . o e 150
Memory Funmclion.ottt ittt ittt ittt iaanren s e 151
Ml OC . . e e e e e e 151
CallOC . . o o e e 152
(=1 15 153
Strimg fuUBCHON. . ..o o i i i i e e ittt ea e 153
214 3 O 153
T (070 71 6 (v) A 154
11 (o4 4 11 1 155
238 o3 ¢ OO 156
Numeric function. ittt sttt ssss 157
-1 ¢ 157
37 4 TR T TS -) « W U 158
ASIN, ACOS, ALAIL.ttt ettt e e e 15%
sinh, cosh, AN, 160
asinh, acosh, Atanh. e e e 161
102 72T a 1 A O 162
eXpP/A0g, 10BL0. L e 163
ATl . . o e 164
Other TUDCHOMS. . ottt it et ittt aaeaaaneernnnnsnsssrssssnsrannnnn 164
 07=] 1 164
L ol o] o).+ 165
OO . o e e 166
e, LB, . .t i e e e e 167

Chapter 8 Error Message Tables. ittt rinsiitrsnsrnsrsanananns 168
l. Command Error Messages. i i e s 168
2. Syntax Analysis EITOT Messages. ot it e s 168
3. Program Execution Error Messages. i 171
L R g o T % 1+ 173
5. General Error Megsages .174

1 PO 176

viii

Part 1

Introduction
to
the C Language

Chapter 1 The Basics of C
Chapter 2 C Interpreter Operation
Chapter 3 Introduction to C
Chapter 4 Sample Programs
Chapter 5 C Interpeter

The Basics
of C

his chapter provides you
T with the basics of the C
programming language,

and introduces a number of fea-

tures. Also included is important
advice for programming, mak-
ing this chapter recommended
reading for evervone.

Chapter 1 The Basics of C

1-1 Introduction to C

Early history of C

C is a programming language that incorporates such concepts as module programming and
stryctural syntax along the lines of ALGOL. Another well-known offshoot of ALGOL is
PASCAL, and forebears of C are the CPL and BCPL languages. Both CPL and BCPL
were early innovations by Britain’s Cambridge University in an attempt to make ALGOL
60 easier to use. This concept crossed over to the United States, resulting in such languages
as B and Mesa. .

B language was developed as the notation of the UNIX operating system, and the develop-
ment of an improved UNIX*! notation produced today’s C language.

Why C?

Up until a number of years ago, the main programming languages for mainframe computing
devices were COBOL, FORTRAN and PL/I, while microcomputers were programmed using
assembler or BASIC. Recently, however, there is a definite movement towards the use of
C for programming a variety of computers. But what has made C the language of choice
for programming? .

One reason is that C was developed for the UNIX operating system. UNIX, on the other
hand, served as the basis for the widely popular MS-DOS*2, which means that the UNIX
notation system is applied in a wide variety of software in use today.

Another reason is the wide appeal of C due to its distinctive features noted below.

Features of C

1. Wide applicability

C can be used in a wide range of programming applications, from numeric calculations
to machine control.

2, Simple program portability
Since C is a high-level programming language, programs can be used on a wide variety of
computing devices.

3. Compact programs

The abundant operators and control structures that are built into C greatly simplify com-
plex processing. Compared with other languages, the rules that govern C are relatively sim-
ple, making program creation quick and easy.

4. Control structures based on structured programming
Structured programming allows easily mastered programs that are similar to human thought
patterns. This means that conditional branching and repeat loop controls are all included.

—

1-2 Learning about C with the PB-2000C

5. A host of operators
C includes arithmetic operators, logical operators, relational operators, incremental/
decremental operators, bit logical operators, and bit shift operators.

6. Pointer control .
Unlike the memory addresses used in FORTRAN, COBOL, and BASIC, C employs a pointer
to indicate memory locations,

7. Efficient use of memory

Memory and data management functions, as well as programs are very compact, for more

efficient memory utilization.

Thanks to features such as these, C gives you the high-level programming capabilities of
FORTRAN and Pascal, with all of the detailed processing of machine language.

*1 UNIX is a registered trademark of AT&T
*2 MS-DOS is a registered trademark of Microsoft, Inc.

1-2 Learning about C with the PB-2000C

There once was a time that C could be seen running on 16-bit or larger computers. A time
when it was only within the realm of programmers and system engineers. Since C notation
resembles that of machine language, it often appeared too difficuit or confusing for the
casual user.

All of that has changed with the introduction of the Casio PB-2000C pocket computer.
The PB-2000C now makes it possible for everyone to enjoy the many benefits of program-
ming in C. The full portability of the pocket computer format means that the PB-2000C
can go along with you everywhere, so you can program and compute whenever and where-
ver you want.

Since C interacts with many of the computer’s functions, it would be difficult to obtain
a solid grasp of its workings by simply reading this manual. We highly recommend that
you get as much hands on experience as possible with the PB-2000C, creating and running
your own programs. This is the best way to learn about the power and versatility of C.

The PB-2000C actually makes a very good teacher. Should you make a mistake when in-
putting a program, error messages will appear on the display to guide you back to the cor-

rect path, With each error you will be moving one more step closer to the mastery of €:
A trace function is also provided to give you valuable insights of programs as they are ex-
ecuted.

Chapter 7

The Basics of C

1-3 Meet the PB-2000C interpreter

With most computers, C acts as a compiler language. A compiler translates the program
written in C into machine language, which can directly be understood by the computer.
The program that the computer actually executes is the machine language program.

Since the compiler must perform the three steps of compiling, linking and execution for
each program, they cannot be executed immediately after you enter them. The two steps
of compiling and linking require some time to perform.

The Casio PB-2000C, on the other hand, features a C interpreter. The interpreter translates
programs as you enter them, making it much easier to operate than a compiler. Once you
enter the program, all you have to do is enter the RUN command to execute the program.
Everyone who has ever worked with the BASIC programming language will find this a very
familiar process. The PB-2000C C interpreter also supports floating point calculations,
structures, and unions, for much of the power of larger computers with C compilers.

Of course, a wide variety of scientific functions found on today’s scientific calculators can
also be incorporated into C programs with the PB-2000C.

Chapter 2

his includes a number
of simple programs to
give you experience

with the C editor and C inter-
preter. Especially important is
the loading of files into the
interpreter, and we recommend
that you take the time to master
this operation completely.

C Interpreter
Operation

Chapter 2 C Interpreter Operation

2-1

About the C interpreter and editor

The PB-2000C provides you with both a C interpreter and editor. The interpreter is used
to execute programs. The editor is used for program creation and editing. Before getting
into the actual operations of the PB-2000C, perhaps it might be a good idea to first look
at these two functions in a little more detail.

About the C interpreter

There are two ways to process a C program: using a compiler or using an interpreter.
With the compiler, the program is first translated into machine language before it is executed.
This means that each time you write a program, all of the following processes must be
performed:

Program input —compiling —+linking — execution.

With an interpreter, the program is entered and executed in the same environment, for easier
operation.

The PB-2000C features a C interpreter. After you enter a program, all you have to do is
enter the RUN command to execute it.

Throughout the rest of this manual, the C interpreter will be referred simply as an ““inter-
preter’’,

About the C editor

An editor can be used to write everything from a few lines to an entire program. Unlike
the interpreter in which simple writing cannot be performed easily, the editor lets you easily
modify and correct programs.

The C editor of the PB-2000C is for writing and modifying C programs. You should note,
however, that you cannot execute programs while in the C editor. You can only execute from
the interpreter.

Throughout the rest of this manual, the C editor will be referred simply as an “‘editor’’.

Note
The only files that can be handled by the editor are those with the identifier <“C*”

N

2-2 Activating the C function

2-2 Activating the C function

Besides its C function, the PB-2000C also features calculator, formula memory, and data
bank functions. Here we will see how to select the C function.

Important: Set the ROM card lock into the LOCK position when using built-in C even if the
dummy card is not loaded in the computer.

To activate the C function
1. Switch the power of the PB-2000C ON,

This display indicates that the computer is in the CAL mode. This is the initial mode when
you switch the computer ON, unless you have changed the initial mode to another using
[set 1. See the separate Owner’s Manual for details.

2. Press the key.

[c][newec][edit]fdisk]
3. Press the function key under [¢ 1 in the function key menu at the bottom of the
display,
[c]

The computer is now in the interpreter, in which you can execute C commands and programs.

About the function key menus

The PB-2000C provides sets of function key menus to make operations quick and easy.
Each function key menu includes four keys, and you can switch menus by pressing the £
key. To execute any of the functions shown in the menu, simply press the function key
underneath the menu selection you wish to select.

Chapter 2 C Interpreter Operation

Menu display

Menu display
L=

Y
[][newe l[edit J[disk]| —— Function key menu

_: | mv—
Function keys

| mmmmoes: S s—

[Iname][klII][Ioad J[save]| —— Function key menu

=
S
s

Function keys

[data][|I|st

_:
Function keys

][marge][preset]|——» Function key menu

—

[C/8 Jiset J[memory]|———= Function key menu

|:1 [—
Function keys

| m—

25

Function key menu commands used in C

The function key menus make such operations as program file selection and entering the
editor quick and easy. Press the key to return to the first function key menu.

fooed

[C][newc][edit][disk]

You can select any of the currently displayed menu selections by pressing the funciton key
below the function you wish to execute.

The following are descriptions of each of the 15 selections available in the C function of
the PB-2000C. In each case, the currently selected file refers to the file whose name is high-
lighted on the display when a function is executed.

EE‘#H EXAMPLE1 . S
ADDRE) math . C

INV . C
[c]inewec][edit |J[disk]

10

2-2 Activating the C function

[c

]

Press the function key under this selection to enter the interpreter.

[newe 1}
Press the function key under this selection to create a new, unnamed C file. If an unnamed
C file already exists in memory, the computer will enter the editor for that file.
[edit]
Press the function key under this selection to enter the editor or DATA EDIT mode for
the currently selected file. For details on the DATA EDIT mode, see the Owner's Manual.
[disk |
This menu selection is only used when the optional MD-100 interface unit is connected
to the PB-2000C. Press the function key under this selection to display the disk menu for
the handling of files stored on the floppy disk currently loaded into the drive.
[name]
Press the function key under this selection to change the name of the currently selected file.
[kill]
Press the function key under this s¢lection to delete the currently selected file.
[load]
Press the function key under this selection to load data or a program from a floppy disk
or an external storage device. See the Owner’s Manual for details.
[save]
Press the function key under this selection to save data or a program from the memory
of the PB-2000C to a floppy disk or an external storage device, or to send data via the
RS-232C interface. You can also make copies of files in the memory of the PB-2000C by
saving from a file to another file with a different name. See the Owner’s Manual for details.
[data 1]

Press the function key under this selection to enter the DATA EDIT mode to edit a sequential
data file. See the Owner’s Manual for details.

N

Chapter 2 C Interpreter Operation

[Mist]
Press the function key under this selection to output the contents of a file to the printer.
See the Owner’s Manual for details.

[merge]

Press the function key under this selection to merge a fiie from a floppy disk or an external
storage device to the currently selected file in PB-2000C memory. See the Owner’s Manual

for details.
[preset]

Press the function key under this selection to specify and cancel preset files. See the Owner’s
Manual for details.

[C/S 1]

Press the function key under this selection to change the identifier of the currently selected
filename. A “*C’’ identifier indicates a C file, while an *‘S’’ identifier indicates a sequential
file. This selection will not appear if there are two unnamed files currently stored in memory,
one with a *“C”’ identifier, and the other with an **S’’ identifier.

[set]

Press the function key under this selection to display the current operational status of the
computer. You can also make various changes in the operational status to suit your individual

needs. See the Owner’'s Manual for details.
[memory]

Press the function key under this selection to check the memory status of the computer.
See page 25 for details.

12

2-3 Interpreter dispfays

2-3 Interpreter displays

Interpreter

The interpreter is used to execute C commands and programs.

To enter the interpreter
1. Press the key.

[c] [newc J[edit][disk]

2. Press the function key under [e] to enter the interpreter.

LY

[e 1

The display appears as illustrated above when vou enter the interpreter. The cursor is flash-
ing in the upper left corner of the display waiting for input.

Using command-line operation

The line in which the cursor is flashing on the display is called the command line. Each
time you press a letter, number or punctuation key, the corresponding character appears
at the current cursor location and the cursor moves to the right. You can enter any of the
following seven commands directly into the command line to perform the functions noted.

LOAPD — loads a program

. RUN — executes the currently loaded program

. NEW — deletes the currently loaded program

. FLIST — displays the filename of the currently loaded program
. EDIT — transfers to the editor

TRON — enters the TRACE mode

TROFF — exits the TRACE mode

No

Unlike BASIC and Prolog, C programs cannot be executed from the command line. You
must first create a program using the editor.

13

—

Chapter 2 C Interpreter Operation

To create a program

Let’s create a simple C program. Follow the procedure outlined below.

1. Enter the word EDIT from the keyboard, and press Exg. The display will appear as illus-
trated below,

EDIT [exg B

[¢c] < 1>

This is the editor display. Let’s create a simple program that displays the word ‘‘HELLO!"".

2, Enter ““mairn()’ from the keyboard and press [,

b main() B9 main()

[c] < 2>

Note that the < 1> in the lower right of the display changed to < 2>. This value
indicates the line in which the cursor is currently located.

3. Enter | (b [¥]) and press kxé.

by (Y] main()

{
B

[c] < 3>

4. Press prd prd, enter printf ("HELLO!"”);, and press [xe.

ferd Brd printf {
(“ ¥ HELLO!"); printf(”HELLO!");
-
[¢] < 4>

4

B

2-3 Imterpreter displays

5. Enter) (k) (U])) and press [xg.

b W) 6 printf(”HELLO!");
}
H

[c] < 5>

This gives us the following C program:

main()
{

printf{”"HELLO! ") ;
}

Now let’s execute our program.

To execute a program

L. Press the function key under le] to to go from the editor to the interpreter. At this
timne, the display should appear as illustrated below.

[e] NEW
LOADI’I rr .
Ready

2. Enter RUN and press fxg to actually execute the program.

RUN [RUN
HELLO!
Ready

Success! Your computer has said “HELLO!”’ to you. Now it is time to store the program
in a file in case we need it later.

18

Chapter 2 C Inmterpreter Operation

To store a program in a file
1, Press the key.

e

[c][newc]jedit]J[disk

Note that your program is actually already saved, but as an unnamed file.

2.

Press & so that the [mame | appears in the function key menu.

[name][kill][load J[save

=
3. Press the function key under [name] to change the name of our program.

iname |

main.c [Exg

new name?

. Enter the name ‘“‘main.c’ in answer to the prompt, and press £xg.

main . C C

[name]J[kill][load J[save

18

2-4 Handy programming shoricuts

2-4 Handy programming shortcuts

This section includes some valuable information on functions of the PB-2000C that will
make your C programming quicker and easier.

Using the RECALL function

The recall function lets you instantly recall the last string of characters entered at the touch
of a single key in the interpreter. This makes it easy to enter a series of identical or similar
commands with fewer keystrokes.

To use the RECALL function

o) main . C C

|c] [newc][edit][disk l
[1 _
pas] fexe) RUN

HELLO!

Ready

Using one-key commands

Programming is kept as simple as possible with the PB-2000C thanks to orne-key commands.
You can enter entire commands by simply pressing the applicable key following the s key.
This not only makes input easier, it also cuts down on the chance of input errors for more
efficient programming.

In order to heip you keep track of ihe one-key commands, an overiay sheet is provided
with the PB-2000C. Place the sheet on the keyboard during programming and you will be
able to see the command assigned to each key.

17

Chapter 2 C Interpreter Operation

Overlay sheet

HOME OHTHAS L 1h

TMEMOIN |

Htl ALL

Let’s have a look at a simple example.

To use one-key commands

1. Press pw), followed by (Z).

brg (2] printf(Hll

“printf(’” immediately appears on the display because it is the one-key command assigned
to the [Z] key.

2. Press pe, followed by (&)

b (B] printf(while (N

This combination of commands actually does not have any meaning, we are just using it
to illustrate the use of one-key commands.
Just as with the RECALL function, the 19 one-key commands of the PB-2000C make in-

put easier while cutting down on the chance of input errors.

-

18

2-5 Using the editor

2-5 Using the editor

The editor of the PB-2000C is used for creating and editing programs, as we saw with our
“HELLOY” program. This section takes you further along the path of using the editor ef-
fectively to create and edit useful C programs.

Entering the editor

You can enter the editor either from the MENU mode (by pressing the function key under
[edit] or {mewe]) or from the interpreter (by entering the EDIT command).

To create a new program from the MENU mode

1. Confirm that the computer is in the CAL mode. If it isn’t, press the @3 key or switch
the power of the computer OFF and then ON again.

e

2. Press the e key to enter the MENU mode,

[c J[newc][edit][disk]

The dispaly will appear as illustrated above when there are no files contained in memory.

3. Press the function key under [newe] to enter the editor. The block cursor blinks at
the upper left of the display as the computer waits for your next input.

[newc] B !

| C

a

1>

B d
Al

The [newe | function is used when you wish to create or edit an unnamed file, After you
create a new file, it is stored as an unnamed file, and you must use the [mame] function
to give it a name.

19

Chapter 2 C Interpreter Operation

To enter an existing program from the MENU mode

1. Confirm that the computer is in the CAL mode. If it isn’t, press the 0 key or switch

the power of the computer OFF and then ON again.

e

2. Press the key 10 enter the MENU mode.

o) M EXAMPLE1 . S
. math : C

INV C

. main
[c] [newc

[edit

. C C
]Idisk]

This display shows the names of all of the program files stored in the memory of the
PB-2000C. The filename that is highlighted is the name of the currently selected file.

3. Use the cursor keys to change the currently selected file to ‘‘main.c”’.
=) CASIO . S EXAMPLE1. S
ADDRESS . S math

I NV

. C
: C @Hﬂﬂllll‘.llﬁl
[c][newc]ledit J[disk]

4, Press [edit] to enter the editor for *“main.c’’.

[edit]

Wain()
{

printf("HELLO!”) ;
[C

-

¥

2-5 Using the editor

'Wr— -

To enter an existing program from the interpreter

1. Confirm that the computer is in the CAL mode. If it isn’t press the & key or switch
the power of the computer OFF and then ON again.

(D

2. Press the @ key to enter the MENU mode.

e

Py p—

INV
[c

]inewc

C

EXAMPLE1.
math
main

:c C
]ledit]J[disk]

S
c

This display shows the names of all of the program files stored in the memory of the

PB-2000C.

3. Press the function key under (¢

[e 1

] to enter the interpreter.

4. Manually enter EDIT”mainc” from the keyboard, and press kxg.

EDIT
") main. ¢ fxg

Wain()
{

printf(”HELLO!") :

[c l

< 1>

¢ If you do not include a filename after the EDIT command, the editor for the currently

loaded file or the last file interrupted by an error will be entered.
* For further details on the EDIT command, see the command reference in Part 2 of this

manual.

el

Chapter 2 C Interpreter Qperation

Moving the cursor

You can control cursor movement using the cursor keys in the editor as follows:

(¢] Cursor moves up
RS Cursor moves down
= Cursor moves left
=) Cursor move right

Moving the cursor to the beginning of a line

Use the following operation to move the cursor to the begining {left end) of the current
line while in the editor:

B (=)

Moving the cursor to the end of a line

Use the following operation to move the cursor to the end (right end) of the current line
while in the editor:

b =)

Scrolling the screen

 Press the (] cursor key while the cursor is at the top line of the display to scroll the display
downward.

* Press the (§] cursor key while the cursor is at the bottom line of the display to scroll the
display upward.

Editing a C program

To edit a C program, you must first enter the editor. There are two modes for editing with
the editor, the INSERT mode and the OVERWRITE mode. Switch between these two modes
by pressing the key.

The INSERT mode

The INSERT mode is automatically specified when you enter the editor. The INSERT mode
is indicated by a cursor that looks like *‘B*’, While the computer is in the INSERT mode,
any characters that vou enter from the keyhoard are ingerted between any characters afready

on the display.

[{

2-5 Using the editor

——r

The OVERWRITE mode

You can specify the OVERWRITE mode by pressing the [%s] key. The OVERWRITE mode
is indicated by a cursor that looks like *‘__"". While the computer is in the OVERWRITE
mode, any characters that you enter from the keyboard replace any characters already on
the display at the current cursor position.

Search function

The editor’s search function lets you search through programs for specific character strings.
We will demonstrate the search function using the following display.

[edit] ﬂain()
{

printf("HELLO!");
[c] < 1>

1. Press the S key to advance to the next function key menu.

Wain()
{

printf(”"HELLO!");
[search] [next][delete] < 1>

ETC.
{w—

2. Press the function key under [seairch].

[search] main ()

printf(“HELLO!");
search?__ < 1>

3. Enter the character string that you want to search for.

Eg pr main()
{
printf{(”"HELLO!");
search?pr__ < 1>

23

Chapter 2 C interpreter Opearation

4. Press the fexg key.

T frintf(“HELLO!");
]

[search]}[next J[delete] < 3>

The specified character string is located and displayed, with the cursor located at the first
letter of the string. The number in the lower right of the display indicates the program line
number.

5. Press the function key under [next] to display the next occurrance of the specified string.

Exiting the editor and loading an edited file

You can exit the editor using one of two different methods:

1. By entering the interpreter (simultaneously executing the currently loaded program).
2. By returning to the MENU mode.

To exit the editor by entering the interpreter

You cannot directly execute a program while in the editor. You must first load the file from
the editor into the interpretor, and then execute it. We will demonstrate using the following

display.
Main()
{
printf(”"HELLO!");
[c] < 1>
1. Press the function key under [¢ | to enter the interpreter, and to simultaneously

execute the commands NEW and LOAD mainc”.

[e] NEW
LOAD"main.c”
Ready

+

24

T

2-6 Checking and specifying memory status

2. Enter the RUN command followed by [g to execute the program ‘‘mainc’’.

RUN fxe

RUN
HELLO!
Ready

To exit the editor by returning to the MENU mode

1. Press the @ key to exit the editor and return to the MENU mode.

=)

&

{memory]

CAS 10
ADDRESS
I NV

[c

] {newc

S EXAMPLE1. S
S math C
C

1[edit]

To check the memory status

2-6 Checking and specifying memory status

The PB-2000C lets you check and specify the sizes of various memory areas.

1. In the MENU mode, press the £ key until the dispaly appears as illustrated below.

[C/S

][set] [memory]

2. Press the function key under [memory] to see the memory status display.

<memory> c file work
26111 20992 4095 1024
free 1011 900

c,file?20992,

4095

Chapter 2 C Interpreter Operation

The second line of this display shows the total user area capacity (in bytes), as well as a
breakdown (from left to right) of the memory capacities of the C area, file area, and work
area. The third line shows the amount of memory that is yet unused (free) in the file and
work areas.

3. Press the g key to proceed to the C area memory status display.

fexe <ec> code symbol stack
20992 5248 5248 12496 {
free 5138 5032 10488
code,symbol?_5248, 5248

The second line of this display shows the total C area capacity (in bytes), as well as a break-
down (from left to right) of the memory capacities of the code area, symbol area, and stack
area. The third line shows the amount of memory that is yet unused (free) in the code,
symbol and stack areas.

To specify the memory status

L. Use the cursor keys to move the cursor left and right between the C area and file area
values on the bottom of the general memory status display, and make changes in the
values by entering values.

2. Press the [exg key to redisplay the general memory status display again with the newly
changed values. At this time, you can make further changes as in Step 1, above.

® Whenever you change the C area value, the C area contents are cleared.

¢ The file area value cannot be made less than that required for storage of files currently
in memory.

® The size of the C area cannot be less than 4,096, and that of the work area cannot be
less than 256.

¢ All variables currently being used in the CAL mode are deleted when any change is made
in the general memory status display.

3. Press the [exg key to proceed to the C area memory status display,

e <> code symbol stack
20992 5248 5248 10496
free 5138 5032 10488

code,symbol? 5248, 5248

26

2-6 Checking and specifying memory status

4. Use the cursor keys to move the cursor left and right between the code area and symbol
area values on the bottom of the display, and make changes in the values by entering
values.

¢ Whenever you change a value in this display, the C area contents are cleared.
* The size of the code area and symbol area cannot be less than 512, and that of the stack
area cannot be less than 1024,

5. Press the [key to redisplay the C area memory status display again with the newly
changed values. At this time, you can make further changes as in Step 4, above.
6. Press to return to the main menu display.

* The following table shows the default values for the various memory areas following the
NEWALL operation.

Memory area 32K byte RAM 64K byte RAM
User area (fixed) 26111 58879
work 1024 1024
file 4095 8191
C 20992 49664
code 5248 12416
symbol 5248 12416
stack 10496 24832

¢ The minimum value for the C area is 4,096 bytes.

* The work area requires at least 256 bytes.

* When you change the capacity of the C area, all of its current contents are cleared.

* When you change any of the values in the C area status display, all of the current C area
contents are cleared.

* When you change the C area value, memory is reserved in the following ratio:
code=1: symbol=1: stack=2.

® The file area value cannot be made less than that required for storage of files currently
in memory,

» All variables currently being used in the CAL mode are deleted when any change is made
in the general memory status display. :

* A “BS error”’ occurs if area values are outside of their specified ranges.

¢ The code area requires at least 512 bytes.

* The symbol area requires at least 512 bytes.

® The stack area requires at least 1,024 bytes.

]

Chapter 2 C Interpreter Operation

Memory Map

0000

1A00

code

symbo!

stack

System RAM area

p-code area *!

..

..

LOAD file table *2

Symbol table *?

Identifier character strings, constants *4

at LOAD *3

#define
token string

........................

........................

#define
identifier
string *®

at RUN *7

Global area

................................

...............................

1/0 buffer

Character operator stack

Free area

Numeric variable data area

Variable table

File area

Free area

Directory area

C area

Work area

File area

User area

2-6 Checking and specifying memory status

Memory contents

*1 p-code area
Statements of C program loaded using the LOAD command, stored as p-code. (2 bytes/1
token)

*2 LOAD file table
Filename loaded by the LOAD command and filename specified by the # include. (16 bytes/1
filename)

*3 Symbol table
Declaration portion of C program loaded using the LOAD command, stored as a symbol
table. (17 bytes/1 symbol table)

*4 Jdentifier character strings, constants
Identifier string and constants of C program loaded using the LOAD command. (Variable
length)

*3 # define token string
All #define token strings in C progrm loaded using the LOAD command. (2 bytes/1 token,
initialized for each execution of LOAD)

*6 3 define identifier string
All # define identifier strings in C program loaded using the LOAD command. (Variable
length, initialized for each executin of LOAD).

*7 Global area
Reserved when the RUN command is executed as an allocated area for C program gloval
variables and memory functions.

*¥ Stack
Reserved when the RUN command is executed as a parameter area for C program local
variables and functions.

Chapter 2 C interpreter Operation

2-7 Using the LOAD command

The interpreter of the PB-2000C includes a function that is equivalent to separate
compilation. This function is executed by the LOAD command.

Creating a file

First, let’s create two files, one named ‘‘mainc’” and the other names ‘‘subc””. The following
two displays show the contents of each file.

main.c

main()

{
printf(“Everybody!\n");
sub();

sub.c

sub ()
{
printf(“How are you?>~n");

]

Enter the contents of each file using the folowing procedures.

main.c

Input: main () g
(B
printf(”Everybody! \n") ; [exg
sub (); [Exg
} b

sub();

2-7 Using the LOAD command

sub.c

Now give the file a name and save it in memory.
Press (), 815, and then the function key under [name .

[mame |

new name?

The computer waits for you to enter a name,

Input: main. ¢ [Exg

main . C C

[name] [kill][load

][save

Now let’s input the second program.

Input: sub() [exg
(Ex
krdErd printf(” How are you? \n"); [xg)
} Ex)

printf(“How are you?\n");

}
B
[C] < 5>

Now give the file a name and save it in memory.
Press @, £%, and then the function key under [name].
& main . C Hi . C
[name]
sub.c [Exg

[name J[kill]{load][save]

The two filenames now appear in the file menu.

3

Chapter 2 C Interpreter Operation

Loading and executing programs

Here we will execute the LOAD command in the interpreter and load both of the the files.
Then we will execute the RUN command to execute both programs.

main .C ol sub . C C
[c][newec J[edit][disk]
Press the function key under [¢ 1.
Input: [c 1 new

new (exg Ready

This operation deletes an program currently stored in the interpreter and waits for input.

Input: LOAD “mainc” [

Ready
LOAD"main.c”
Ready

The computer loads the file ‘““main.c’’ into the interpreter and awaits further input. Here,
let’s load the file “‘sub.c’’.

LOAD “subc” fexg Read y
LOAD”"sub.c”
Ready

The computer loads the file “‘sub.c’” into the interpreter and awaits further input. Now let’s
execute the two files,

RUN fxe] Everybody!
How are you?
Ready

32

-

2-8 Execution using batch files

main.c

sub.c

As the programs are executed the word ‘“Everybody!’* appears on the first line and ‘““How
are you?’’ appears on the second line. Let’s go back to our programs to find out why these
words appeared as they did.

This program contains the standard library function printf(). A standard library function
is a function that is built into C to perform a specific task (see Chapter 3 for further details).
In this case, the printf() function outputs the string of characters that is included inside
of its parentheses.

Note also that the string of characters is included inside of a set of double quotation marks.
At the end of the string is ““ ~n’". This tells the computer to include a carrier return at the end.

This program is much the same as ‘‘main.c’’. The string ‘*“How are you?"’ is produced by
the printf() standard library function, and then a carrier return is output by ‘“~n"’.

2-8 Execution using batch files

A batch file lets you arrange a series of LOAD commands followed by a RUN command
so that all of the filenames specified inside of the batch file are ioaded and executed each
time you execute the batch file.)

Here, let’s create a batch file that loads and executes the ‘““main.c’” and ‘‘sub.c’” files that
we created previously. The program contained in the batch file will be the following:

NEW
LOAD“mainc”’
LOAD*sub.c”
RUN

We will start from the MENU mode.

main . C C Bl . C C

[c][newc Jledit][disk]

KK

Chapter 2 C Interpreter Operation

To create a batch file

1. Press the function key under [newe | to enter the editor.

[newe] B
[c] < 1>
2. Enter the program as follows:
NEW [exg)
LOAD“*mainc”’
LOAD“‘sub.¢’’ [xg
RUN (exg
LOAD"sub.c”
RUN
A
[c] < 5>

3. Now, press the & key to enter the MENU mode and then press &% so that the following
display appears.

main . C C_ sub- . C C
=
[name]J[kill][load |][save |

The highlighted file is the unnamed file that we have just created.

4. Name the file “‘greeting. BAT”, and press 5. Note that “‘BAT’’ must be all uppercase

letters.
[name | main c C sub c C
[greeting. C
k) BAT
new name?greeting.BAT_

34

2-8 Execution using batch files

: 4

e ma in . C C_ sub . C C
greeting.BAT C
[name][kill][load][save]
Important

¢ The indetifier for batch files must always be ““C. The ““C”’ identifier is assigned
automatically when a new file is created using [newe].

Executing a batch file

There are a variety of ways to execute a batch file. We will describe all of them here, starting
with the simplest method.
To execute a batch file from the MENU mode

1. Ensure that the filename menu is shown on the display and that the batch file filename
is highlighted.

main . C C sub . C C
greeting.BAT C
[¢][newe][edit][disk !

2. Press [exs.

This executes the file ‘‘greeting. BAT”’ and scrolls the display as each message appears.
The following shows all of the messages that appear and scroll through the display.

NEW
LOAD"main.c”
LOAD"”sub.c”
RUN
Everybody!
How are you?
Ready

To execute a batch file from the editor

1. While in the editor, press the function key under [c J. This will execute the batch
file as long as its extension is ““BAT"".

Chapter 2 T Interpreter Operation

To execute a batch file at power ON

You can specify a batch file to execute automatically each time you switch the power of
the computer ON. All you have to do is name the desired file “AUTQ.EXE"’.

sub . C C

[c][newc J[edit][disk]

To execute a batch file as a preset file

First we have to specify the batch file as a preset file.
1. Ensure that the filename menu is shown on the display and that the batch file filename
is highlighted.

main . C C _ sub . C C

greeting.BAT C

[c][newc J[edit]J[disk]
2. Press £ twice.

& main . C C sub . C C
greeting.BAT C -

[gata J[llist]J[merge][preset]

3. Press the function key under [preset] to change ‘‘greeting. BAT”' to a preset file,

[preset] main . C C_ sub . C C
greeting.BATxC

[data J[llist]J[merge]J][preset]

Note that an asterisk appears before the identifier. This means that this file is a preset file.
This completes the procedure to specify a file as a preset file, but let’s continue and see
how preset files are executed.

2-8 Using the trace function

4. Press [ca.

=0

[greeti]

This puts the computer into the CAL mode (see the Owner’s Manual for details). Note
that the name of the preset file that vou have just created is shown at the bottom of the
display as a preset filename menu selection.

5. To execute the ‘‘greetings’” file, press the function key under [greeti].

* You can have up to four preset files at any one time.

® Only the first six characters of the filename appear in the preset filename menu of the
CAL mode.

* You can use other files (non-batch files) as preset files. When you execute a preset file
with a C identifier from the CAL mode, the computer enters the interpreter and loads

the file. If the preset file has an ‘‘S* identifier, the computer enters the editor for editing
of the file.

2-9 Using the trace funqtion

The trace function of the interpreter executes programs statement-by-statement to let you
see on the display the exact flow of all of the commands. This function comes in very handy
when debugging programs or when you wish to see the operation of the control structure.
When the trace function is activated, the computer is in the TRACE mode,

To illustrate operation of the TRACE mode, we will use the files “‘main.c’ and *‘subg”
which we have already created. After loading the two files in the interpreter, the display
should appear as follows:

Ready
LOAD”sub.c¢”
Ready

37

Chapter 2 C Interpreter Operation

To enter the TRACE mode

1. Enter the TRON command and press [xg. “TRON’’ stands for frace on.

TRON &8 Ready

TRON
Ready

The computer is now in the TRACE mode. Next we will execute the two programs which
have been loaded to see how the TRACE mode operates.

2. Enter the RUN command and press [,

RUN fxg Ready
RUN
[main.c(3)]
ATy 7

printf("Everybody!

This display shows that execution is halted at Line 3 of the file “main.c”’. The question
mark in the bottom line of the display indicates that the computer is asking if it should

execute Line 3. Note the following:

{ File name (line number)

[main.c(3)]
LA B

t
Waiting for input

printf(”“Everybody!
t

Statement

3. Press [xg) to execute Line 3 of ““main.c’’.

Exd [main.c(3)]
\n"),; ?
Everybody!

[main.c(4)]

printf(”"Everybody!

sub(); ?

This display shows the result of the execution of Line 3 of ““main.c’’, and stands by waiting

for you to press Exg and execute Line 4.

2-9 Using the trace function

4, Press [xg to execute Line 4 of ‘“‘main.c’.

EE)

Everybody!

[main.c(4)] sub(); ?
[sub.c(3)] printf{(“"How are you
2xn”),; ?

After Line 4 of ‘‘main.c’’ is executed, the computer enters file “‘sub.c’’. Execution stops
at Line 3 of ‘‘sub.c’’ and the computer waits for you to press [xg,

5, Press [xg to execute Line 3 of ‘‘subc”.

fexd

2\n"); ?
How are you?
Ready

The result of the execution of Line 3 of **sub.c’’ is displayed. Since this completes execution
of both programs, the interpreter stands by waiting for your next input.

To interrupt execution in the TRACE mode

1. To interrupt execution of a program in the TRACE mode, press the key.

RUN

[main.c(3)] printf(“"Everybody!
xn"); ?

Break ?7_

2. At this point, vou can do one of the following:

® Press g or (€} to resume execution in the TRACE mode.
* Press or [A] to interrupt execution in the TRACE mode.

Chapter 2 C Interpreter Operation

To exit the TRACE mode

There are four different methods that you can use to exit the TRACE mode.

* Enter the TROFF command and press €. ““TROFF’’ stands for trace off.

TROFF@ Ready
TROFF
Ready

* Exit the interpreter by entering the editor or the MENU mode. This automatically exits
the TRACE mode.

* Switch the power of the computer OFF., This automatically exits the TRACE mode.,

* Press the (N] key while TRACE mode execution is interrupted after you press the key
(see above),

40

Chapter 3

Introduction
to C

his chapter tells you
about the important
points and rules to

remember when creating C
programs. Simply work with the
example programs presented in
the chapter to become familiar
with proper procedure. This
chapter puts you on the road to
becoming a C programmer.

Chapter 3 Inmtroduction to C

3-1 Outputting characters

Creating a program to output character strings

We have already had some experience in Chapter 2 with a few simple programs that output
single lines of characters to the display. Here, let’s take this to the next logical step and
see how to output multiple lines.

Before we begin with this exercise, be sure that you have assigned names to all of the files
that we have created until now.

1. Press the function key under [mewe] to enter the editor and create a new unnamed file.

2. Enter the following:

main() Exg
[g
printf("How are you? \ n"); [Exg
krd printf(”Fine, thank you \ n”); [exg
j

printf(”“Fine, thank you\n");

}
i

[c] < 6>

The display should appear as illustrated above when you complete entering the program.
The following shows how the program is stored in the file.

main()

{
printf(”“How are you?\n");
printf(”"Fine,thank you\n"):

42

3-1 Qutputting characters

As you can see here, C programs are generally written using lower case characters. Also
note the following characters in lines 1, 2 and 5 of the program:
main{)

..............

These are called the function that makes up the C program. The word “‘main’’ defines the
function name, and the statements between the braces are actually executed. Actually you
can assign your function any name you wish, but ‘““main’’ is special in that the computer
will always begin execution from the function named ‘“main’’.

Lines 3 and 4 contain two printf statements. The printf statement is actually a function
of C language that is used to output characters to the display. Such functions are called
standard functions. The character strings included within the parentheses following printf
are what is output to the display. Note that a character string is defined as such by being
included within double quotation marks. A character string or anything else that is included
within the parentheses is called an argument.

The “*~n"" at the end of the two printf character strings is called a newline character, and
it advances output to the left margin of the next line. Here the newline character is at the
end of the string, but you can also include it within the string to tell the computer to go
to the beginning of the next line.

Now let’s enter the interpreter to execute this program. To do this, press the function key
under [c] while in the editor.

After you performed the procedure described above, the computer will enter the interpreter,
load the unnamed file, and stand by for further input.

NEW +— Initializes

L OAD " + Loads unnamed file
Ready

_ « Stands by for input

Now enter the RUN command and press [exe.

RUN fexg How are you?
Fine, thank you
DnﬂAll
llGQUy

The screen scrolls as results are output to the display, and the computer stands by for fur-
ther input following execution.

43

Chapter 3 Imtroduction to C

Making your program easy to read

You have probably noticed by now that we have been writing and editing our C programs
in a certain format. The previous program was written and entered as:

main()

{
printf(”“"How are you?\n");
printf(“Fine,thank youxn");

We could have just as easily written and input it as:

main()
{
printf{(”“"How are you?>nFine,thank you~n");

}

The computer would execute the program identically in either case. The former format is
preferred, however, because it is much easier to read. Though you may not see the need
for such a format at this point, but when you start dealing with longer programs you will
greatly appreciate an easier to read format.

Creating a program to output numeric values

PB-2000C programs can output octal, decimal and hexadecimal values.

Here, let’s create a program that displays the value 65 in its decimal, hexadecimal and floating
point format, using a few more new techniques.

First, enter the editor and input the following:

Vg S Qutput frd Value % / {Exg)

main{) [Exg

{ Exg

Erd erd Brd printf(" D = Yd H =%x F=%f\n", 65, 65, 65.0) ; 1§
) [Exg)

65,65.0)
}
H

44

3-1 Outputting characters

The following is the program list for our ‘‘Output Value’’ program.

/¥ Output Value %/
main()
{
printf(”“D=%d H=%x F=%fn",65,65,65.0);
}

The first line is what we call a comment line. The computer reads everything between /%
and */ as a comment, and so they are ignored. You can use comment lines inside of pro-
grams to point out certain features, or as memos for later reference,

The remainder of the program is quite similar to the one that we created to output charac-
ter strings to the display, but the argument for printf looks a bit different. The commas
inside of the parentheses are there to separate arguments. This means that the printf state-
ment in this program has a total of four arguments.

printf("D=%d H=%x F=%f>n", 65, 65, 65.0);

L - 4th argument
Ist argument

3rd argument
2nd argument

The arguments inside of the parentheses of printf tell the computer to print the following:

D= «65 as decimal integer> H= <65 as hexadecimal > F= <65.0 as floating point >

Note that there is a direct relationship with the 1st % construction and the 2nd argument,
the 2nd % construction and the 3rd argument, and the 3rd % construction and the 4th
argument. This sounds more confusing that what it actually is, and you might better
understand it as illustrated below:

printf(“D=%d H=%x F=%f\n",65,65,65.0};
—f—x 5 T |

45

Chapter 3 Introduction to C

Integer

You just have to be careful to ensure that the proper % construction is matched with the
proper value, or else you will get strange results. Here is a list of some other % construc-
tions in addition to those noted above.

% construction Qutput
%d decimal integer
%ox hexadecimal integer
Tof floating point
Yos string
Toc single character

For further details, see the command reference in Part 2.

Now let’s enter the RUN command to execute our program and look at the result.

RUN [exg RUN

D=65 H=41 F=65.000000
Ready

Here we can see that the decimal equivalent of 65 is 65, the hexadecimal equivalent is 41,
and the floating point equivalent is 65.000000.

notation in C

In the previous program, the decimal value 65 was converted in accordance with three cor-
responding % constructions, In some instances, however, you might want to include the
actual values as they are in the printf arguments, without conversion when they are dis-
played. To do this, you have to specify the value as an integer constant. With C, you can
specify decimal, octal, and hexadecimal values, as well as characters as integer constants.
In the case of a character, its 8-bit ASCII code is used when it is specified as an integer
constant. Use the following formats to specify values or characters of integer constants.

65 — displayed as decimal integer 65.
0101 — displayed as octal value 101. Include 0 in the first digit of an octal value to specify
it as an integer constant.

Oxd41 — displayed as hexadecimai vaiue 41. Include Ox or 0X in the first two digits of a
hexadecimal value to specify it as an integer constant,
'A’” — displayed as a single character. Include the character in single quotes.

+

48

3-2 Variable types and operations

If you go back to our last program and change the printf arguments as noted below:

main()

{
printf(”"D=%d O=%0 H=%x C=%c\n”",865,0101,
Ox41,"A");

The following results would be displayed:

D=65 0O=101 H=41 C=A

3-2 Variable types and operations

Declaring variable types

With C programs, you have to declare the type of data that will be assigned to each varia-
ble before you can use that variable. The following statement, for exampie, tells the com-
puter that the variable ““x>* will be used for the storage of integers:

int x;

The following table shows the other declarations that can be made for variables.

Declaration Meaning

char 8-bit integer

short 16-bit integer

int 16-bit integer

long 32-bit integer

float 32-bit, single-precision floating point
double 64-bit, double-precision floating point

Besides these, you can also include the declaration ““unsigned’’ in front of any of the integer
declarations (except long) to indicate that the integer is unsigned (no positive/negative sign).

47

Chapter 3 Introduction to C

Assigning values to variables

To see how to declare variables and also how to assign values, let’s write a program that
performs various operations using the values 49 and 12.
Enter the editor and input the following program.

/% ARITHMETIC OPERATIONS1 %/
main()
{

int a,b,c,d,e;

a=49+12;printf {"%d “,a)
b=49-12 ,printf ("%d ", h)
€c=49%12;printf (”%d ",c)
d=49/12;printf ("%d ", d)
e=49%12;printf("%d \xn",e)

The first four operations are addition, subtraction, multiplication and division. The value
for “*e’* will be the modulus (remainder) of 49 divided by 12.
When you execute the program, the display should appear as follows:

RUN
61 37 588 4 1
Ready

The following statement in the first line of the program declares that all five variables will
be for the storage of integers.

int a, h, ¢, d, e

As you can see, you can use a single declaration for multiple variables by separating the
variables by commas.

In each of the following lines, the computer performs the calculation and assigns the result
to the corresponding variable. Then the result is displayed by including the variable as an
argument in the printf statement,

48

E’

3-2 Variable types and aperations

.
(

Using arrays

closed within brackets.

An array is a variable with depth. With an array, you use a single letter followed by a value
to indicate the variable name. For example, a[0], a[1], a[2], a[3], a[4] represent five memory
areas within an array called ‘“a[5]"’. Note that the values following the letiers must be en-

With arrays, declaration of data type becomes very simple. The following statement at the
beginning of a program declares an array from a[0] through a[4] for integers:

int a[&8];

lation results, and use an array instead.

Let’s go back to our original program where we used variables A through E to store calcu-

/% ARITHMETIC OPERATIQONS2
main()
{

int al{5];

al0]=49+12;printf (" %d
af{1]=49-12;printf ("%d
aj[2]=49%x12;printf ("%d
a[3]=49/12;printf (“%d
al[4l=49%12;printf(“%d\n

(23

L

"

0

r

tical to those obtained by the previous program.

values:
af01[0] a[1}[0] af2][0]

af0l1} a[1}1] af2][1]
al01[2] alll[2] a[2][2]

Array a[3][3] is called a 3 x 3 2-dimensional array.

Though the type of variable used is different, the results produced by this program are iden-

Note that an array may also have width. The array a[3]{3] would represent as total of nine

49

Chapter 3 Introduction to €

3-3 Entering characters and values

Entering a single character from the keyboard

Here we will create a program that outputs a character and its corresponding character code
in hexadecimal format. If you press the key for the letter *“B*’, for example, the format will be:

Char=B Hex=0x42

The standard function getchar() is used to tell the computer to get one character input
from the keyboard.
The following is the program that will accomplish our task:

/% #include “"stdio.h" x/
main()
|

int c;

c=getchar();
printf(”“Char=%c¢c Hex=0x%x\n",c¢c,c);

The getchar() function only returns the character code, and so no argument is used inside
of the parentheses. In the printf{) function, %oc specifies character format, while %x speci-
fies hexadecimal format.

Try inputting and executing this program.

When you enter the RUN command, the interpreter executes the program until it comes
to the getchar() function. At that time execution stops and the cursor flashes at the bot-
tom of the display waiting for further input. At this time, you should enter a letter, number
or symbol. The following shows the display which should result if you enter the letter *‘Q*’.

RUN (&g Q
Q [xg Char=Q Hex=0x51
Ready

This shows that the character code for *“Q’’ is hexadecimal 51.

3-3 Entering characters and values

Entering values

Now let’s try a program that calculates the sine and cosine of values that you enter from
the keyboard. Since we can be expecting decimal values for input and output, we will be
defining the variable as floating point. The program to accomplish this task would appear
as follows:

/*¥ #include “"stdio.h” %/
/¥ #include "math.h” X/
main()
{
float X
printf(“Input Value(DEG)");
scanf ("%f", &x);
angle{(0C);
printf(”“sin{%f}=%f\n", x, sin{(x)};
printf(”"cos(%f})=%f\n", x, cos(x))

L

First we must specify the variable x as floating point.

The next line tells the computer to print the message ‘‘Input Value (DEG)’ as a prompt.
The scanf() function is used to get the entry of a value from the keyboard. Exactly the
opposite of the printf function, the first argument of scanf() determines the type, and
the value is assigned to the second argument. In the program here, we can see that the first
argument of scanf(} is %f, to indicate floating point. The second argument is &x which
is a pointer which indicates an address in memory. The second argument of the scanf()
function must be a pointer.

The statement ‘“‘angle (0);'” specifies the unit of angular measurement. You can specify the
unit by changing the value following ‘‘angle’’ as follows:

angle () — degrees
angle (1) — radians
angle (2) — grads

The next statements are the now-familiar printf(). Note that the Ist argument contains
two % f (floating point) values which correspond to the 2nd argument (x) and the 3rd argu-
ment (sin(x) or cos(x}).

ol

Chapter 3 Introduction to ¢

After you input this program, enter the interpreter and execute it.

When the counter reaches the scanf() function, it displays the message ““Input Value (DEG)”’
and waits for input of a value. Here, let’s enter 60 and press the [key. This value is assigned
to variable ‘‘x’’, and the following appears on the display.

RUN g §in(60.000000)=0.866025
60 fexg co0s(60.000000)=0.500000
Ready

Why don’t you try modifying this program so that it calculates in radians or grads?

3-4 Using selection statements

Using the “if” selection statement

You can use the ““if*’ statement to tell the computer to shift the flow of control if certain
conditions are met. The ““if”’ statement has two basic formats.

1. if (condition) statement

Here, the statement is executed if the condition is met (true=any value other than 0), and
not executed if the condition is not met (false=0).

2. if (condition) statement 1

else staternent 2
In this case, statement 1 is executed if the condition is met (true = any value other than 0),
while statement 2 is executed if the condition is not met (false=0).
The if ~ else statement may contain multiple statements for the *“if”’ and the “‘else’’ state-
ments. In the following example, please also note the proper format for easy reading. Note
that the statements are aligned and also note the position of the braces.

3-4 Using selection statemenis

if (condition) {
Statement 1
Statement 2

else [
Statement 3
Statement 4

A program to solve quadratic equations

Here we will create a program that produces two solutions for the following quadratic
equation:
ax’ +bx+c=0 (a+0)

In the above equation, it is assumed that @, b, and ¢ are real numbers.
The solution formula is:

—bxvhi—dac
2a

Also, the following is the discriminant which determines the following concerning the solu-
tions of the above equation:

D=k —4dac

D>0 — two different real numbers
D=0 — muitiple solutions (real numbers)
D <0 — two different imaginary numbers (conjugate complex numbers)

In the program listed below, the discriminant is used in the condition of a selection statement,
with one operation being performed if Dz 0 and another being performed when D<0.

93

Chapter 3 Introduction to €

/¥ #include "math.h” x/
main()
{
double a,b,c,d,q,r;
scanf ("%If %If %I f”~
d=bxb-4.0%ax%xc¢:
it (d>=0) i
g=(-b+sqrt(d))/as2.0;
r=(-b-sqrt(d))/as2.0;
printf("%wlf, %lfsxn"",q,r);

, &a,&b,&c);

J

glse|
r=sqrt(-d)/as2.0;
gq=-b/a/2.0;
printf ("% f+%If] g,
printf("%If-%Ifisn”,q,r)

The variables ““a”, “‘b"’, and *‘c’’ correspond to the “@”, “b”, and ‘“¢”’ in the quadratic
equation, while the **d’” variable is the ““>"’ of the discriminant. Variables “q" and “r”’
are used for the two solutions. Note that all of the variables are specified as ‘‘double™,
meaning that they are for double-precision floating point values.

Note that the % construction in the scanf() function is ““If%"". The *‘f’ portion specifies
a floating point value, while the ““I”’ stands for long, and means that the integer part of
the value is longer than normal.

Relational operators

The conditions “‘d > =0"" is called a relational operator. This tells the computer to com-
pare the value assigned to variable “‘d’’ with 0. If the value of “‘d”’ is greater than or equal
to 0, a value of 1 is returned to indicate true. If it is less than zero, a 0 s returned to indicate
false. The following are the other relational operators that can be used with C,

Operator | Example Meaning
> i>] True (1) if i is preater than i, false {0} if not.
< i<j True (1) if i is less than j, false (0) if not,
>= i»=j True (1) if i is greater than or equal to j, false (0) if i is less than I
<= i<=j True (1) if i is less than or equal to j, false (0) if i is greater than i
== i==j True (1) if i is equal to j, false (0) if not.
I= il=j True (1) if i is not equal to j, false (0) if it is.

54

3-5 Using loops

Enter the program and then go to the interpreter to load the file. Enter the RUN command
and enter values for variables ““a’’, ‘“b”, and *‘¢”, pressing [xg after each entry. Here, we
will use the following values as an example:

RUN kxd 1 [d 5 &8 — 14 [exe]

-14
2.000000, -7.000000
Ready

We can confirm that these values are correct by performing the following manual calculation:

1%22+5%x2+(—14)=0
1x(=TR+5x%(—T)+(—14)=0

For the next example, lets enter values that will produce imaginary numbers.

RUN fxd 2 Exg 3 fxg) 4 exg

-0.750000+1.198958i -0.750000-1
.198958i
Ready

3-5 Using loops
Using the ‘““while” loop

The “‘while’’ loop makes it possible to repeat execution of statements until a specific con-
dition is met. The format of the “‘while”’ loop is as follows:

while (condition)
statement

The *“while” loop first executes the condition. If the condition is met (true, returning a
ate-other-than 0);thestatment-isexecuted, andexecutiorroops back to the ~while** toop

to evaluate the condition again. Whenever the condition is not met (false, returning 0),

execution of the ‘““while’” loop is ended.

You can have multiple statements in a ““while’’ loop, but note the following format that

you should use in order to make the program easier to read:

Chapter 3 Introduction to C

while (condition) H
statement 1
statement 2

statement n

The braces in the above list define the statements that are performed in the *‘while’’ loop,
and so the closed brace should be directly under the ‘‘w” of the ‘*while’’. Keep the state-
ments indented.

Now let’s create a program that uses the ““while’” loop. The program will output the character
codes for the characters ““0** through “Z”’, as illustrated below.

Char(0) = Hex(0x30)
Char(l} = Hex(0x31)
Char(2) = Hex(0x32)

Char(X) = Hex(0x58)
Char(Y) = Hex(0x59)
Char(Z) = Hex{0x5A)

The following shows the program that produces such results.

#define STR "0
#define END rZ

main()
{
char ch;
ch = STR;
while(ch<=END) f
printf(”“Char(%c)=Hex(0x%x)\n",ch,
ch);
getchar(},;
ch++;

o6

3-8 Using loops

Using the # define statement

Line 1 and Line 2 of the program contain the #define statement. The #define statement
defines a name for a particular string of characters. In the above program ** #define STR
‘0" ** tells the computer that anytime it comes across the name ‘‘STR”, it should replace
it with the character “*0’". Likewise, ‘ #define END “Z’ *’ tells the computer that the name
“END”’ is to be replaced with the character <“Z’.

The reason for using the # define statement is to make programs easier to read and to change
later. If, in the above program, we used the character ““0’’ a number of times throughout
the program and we wished to change all of them to “*A”, it would be much easier to change
the # define statement once, rather than making multiple changes.

Incrementing and decrementing

The program here establishes the initial value for variable ‘‘ch’* as ““’0’ *’, and tells it to
keep repeating the loop ‘‘while (ch< =END)”, in which END is a name that represents
the character ““Z’". As long as ‘‘ch” is less than or equal to *“Z”’, the following printf()
statement is executed and then the getchar() statement is executed. This program does not
really require input of any characters, but if we did not include a getchar() statement here
the data produced by this program would simply scroll across the display so quickly that
we would not be able to use it. The getchar() statement causes the computer to stop here
and wait for input, so you can read the last line produced by the program. When you are
ready to continue, simply press the fxg key.

Once execution continues past the ch+ +; statement, 1 is added to the value of ‘‘ch’’. This
is accomplished by the statement ‘‘ch+ +** in which “* ++ 7 is called the increment operator.
The following table shows how it is used, as well as its opposite, the decrement operator.

Operator Example Meaning
+ + + +1i Increment i by ! and use the value,
- - - —i Decrement i by } and use the value.
+ + i+ + Use i and then increment it by 1.

- - i—— Use i and then decrement it by I.

As you can see here, the increment and decrement operators can be used either before or
aftel'thev " CTERNT T Or o1ne L Obherators. see L nane O -‘ mManyuy
Now let’s enter the program using the editor, and then execute it in the interpreter.

57

Chapter 3 Introduction to C

Using the “‘do ~ while”’ loop

The “‘do ~while’” loop is another method that you can use for repeat execution. The format
of the “*while’’ loop is as follows:

do
statement
while (condition);

Unlike the ‘“‘while’ loop, the ‘““do ~ while’ loop executes the statement first and then checks
whether or not the condition has been met or not. Note also that the semicolon at the end
of the ‘““while’ line cannot be omitted.

Let’s use the ‘‘do~while” to find the Greatest Common Measure for two values.

(

main()

int gecm, Xx, y;

Xx=56;
y=63;
printf(”"~nGCM(%d,%d)=",x,y);
do f{

gcms=x; x=y%x ; y=gcm;
} while(x!=0);
printf(“%dsxn”, gcm);

When you execute this program, the following result should be produced:

GCM (56, 63) = 7

Using the “for”’ loop

You can also use the “‘for’* loop for repeat execution of statements. The format of the ““for’’
loop is as follows:

for (expression 1; expression 2; expression 3)
statement

3-5 Using loops

Note that there are three expressions inside of the parentheses of the ‘‘for’’ loop. Expression
1 initializes the counter variable, and it is executed only once, before the first pass of the
toop. Expression 2 is the condition of the loop, so the loop continues to execute until this
condition is not met. Expression 3 performs an operation on the counter variable before
the statement in the loop is executed. Note the following:

for (i=0; i<10; i++)
pringf{ « « « - -}

This tells the computer to exccute the printf() statement starting from a count of 0 which
is incremented by 1 with each pass of the loop, until the count reaches 10.

As with the *“if*” and *‘while’’ loops, multiple statements within a **for’* loop are enclosed
in braces.

Let’s write a program that squares all of the integers from 1 through 100. Note the follow-
ing list:

main()

{

int i

for (i=1; i<=100; i++)
printf(“%8d %8d\n", i,i%i);

First, let’s look at the expressions contained in the parentheses following the **for’ state-
ment and see what each of them means.

expression 1 i=1 Initial value of counter is 1.
expression 2 i< =100 Repeat as long as i is less than or equal to 100.
expression 3 i++ Increment i by 1 with each pass of loop (i=i+1).

In effect, this tells the computer to keep repeating the loop starting with a counter value
of 1, and repeat the loop as long as the counter value is 100 or less.
In the next line we have a printf() statement. The **%8d"’ in the first argument tells the
computer to display the value flush right in an 8-character block reserved on the display.
Flush left would be *‘% —8d’",
— The getchar() statement causes the computer to stop and wait for input, so you canread
the last line produced by the program. When you are ready to continue, simply press the
fexd key.
Enter this program, load its file into the interpreter and enter the RUN command to see
how it works.

Chapter 3 Introduction to C

1 1
2 4
3 9
98 9604
99 9801
100 10000
Ready

The following shows how the same loop would be written as a ‘‘for’’ loop and a “‘while”

loop.

for (expression 1; expression 2; expression 3)
statement

expression 1;

while (expression 2)
statement
expression 3;

(

As you can see, the ‘‘for’* loop is much easier to write and read.

Nested loops

The term nested loop means simply ‘‘loops inside of loops”. To better understand how
nested loops work, let’s have a look at a very short, simple representative program.

main()

{
float a[31[31];
int R

for (i=0; i<3; i++)
for (j=0; j<3; j++)

scanf("%f", &alillil);

3-5 Using loops

The program uses a pair of ‘‘for’’ loops to read values from the keyboard and assign them
to the 3 x 3 2-dimensional array a[3][3]. Remember that such an array looks something

like the following:

a [0] [0]
a [0] [1]
a [0} 2]

a [1] [0]
a [1] (1]
a [1] [2]

a 2] [0]
a [2] (1}
a [2] 2]

Considering just the loop counter (i and j) values, the above program executes as follows:

First pass (i)

Second pass (i)

Third pass (i)

i=0

i

i=0
ji=1
j=2

i=2

j=
j=
J

S e e

This means that values entered from the keyboard are read into ““%f”’ by scanf() and
assigned to array a[3][3] in sequence by “*&a[i][j]*’ as **i”” and “‘j*’ change values as noted

above,

Let’s expand on this program so that a second nested loop reads the values out of the array

and displays them on the screen.

main()

{
float a[3][3];
int T

tor (i=0; i<3;

i++)

for (j=0; j<3; j++)

scanf ("%f",
tor (i=0,; i<3;

&ali]l[il]);
b+ +) §

for (j=0; j<3; j++)

printf(“"%8.2f1",

afillil);

printf{(”"~xn"};

The first line of the program declares a 3 x 3 2-dimensional array to hold floating point

values. The next line specifies the values of ‘‘i’> and “‘j>* as integers.

61

Chapter 3 Intraduction to C

Next, we have the value assignment nested loops we saw before, followed by a similar set
of loops to read and display the values after they are stored. The only new item is the ““% 8.2’
which specifies that each value will be displayed in an area of at least 8 characters, with
two decimal places (right flush).

Enter the program and then execute it. As an example, enter the following values as noted.

RUN [exg
1692364 5 6Exd 6 fxd 7 Fxd 8 x99 g
Scrolled off the display — 1. 0@ D @@ 3. @@
4.00 5.00 6.00
Last line — 7.00 8.00 9.00
Ready

Inputting and outputting character strings

Lets use a “‘while”’ loop to read input of a character string from the keyboard and then
output the siring to the display. This program will also limit input to 128 characters,

I #include "stdio.h” x/
#define LINESIZE 128
main{)
{

int i

char s[LINESIZE];

i=0;

white((s[i]=getchar())!="~n")
i++;

s[i]="N0";

for (i=0; s[i]!'="N0",; i++)
putchar(s[i]};

3-5 Using loops

Variable “‘s’” is declared to be an array for storage of character strings, and the depth of
the array is defined by LINESIZE, which is the name assigned to the value 128.
Let us now look inside of the paretheses of the ““while’’ statement.

while {(s[i]=getchar())!="~n")

With the initial pass of the loop, the inner statement is executed first to assign a character
entered from the keyboard to s[0]:

(s[i] =getchar(})

Then the computer is instructed (by !=) to check whether or not the character assigned
to the array is a newline character:

while (........ 1="\n")
This gives us the entire “*while’’ statement:
while ((s[i] =getchar())!="\n’}

In review, it says ‘‘get a character from the keyboard and assign it to the array’’. Keep doing
this unless the last character was a newline (Exg).

The *‘i+ + " in the next line increments “‘i’* so that the input progresses through the array
(s[0], s[1}, s|2], s3], etc).

When the [xg key is pressed, the computer detects a newline character and exits the **while”’
loop. The next line of the program replaces the newline character with 0, by:

sfi]="~N0
The “*for’” loop in the next line recalls the characters from the array and puts them on
the display.

If you run this program and enter the word ‘‘Good'’, the display should appear as illustrated
below:

RUN Good
Good [Good
Ready

The following shows the contents of the array s[i] following the above execution.

Input s[0] s[1] s[2] s[3] s[4] s[5] sfe} | -0
G "G
o 'G’ ‘o'
o G’ o’ o’
d ‘G o’ o’ d’
exg G o’ o’ d’ ‘N’
G o’ o d’ 0

Chapter 3 Introduction to C

Standard functions

The standard functions have been preprogrammed into C to make various complex functions
as easy as including the corresponding function within the program. The following table
shows the most commonly used standard functions and their operation. See the function

reference for further details.

Standard Function

Operation

putchar{c)
puts(s)

printf(:--)
getchar()
gets(s)

scanf(-+)
strlen(s)

strcat{sl,s2)
stremp(sl,s2)
strepy(sl,s2)
fopen(file,mode)
fclose(filep)

QOutputs character ¢

Qutputs character string s.

Outputs expression,

Reads character from standard input.
Returns entered string into character string s.
Inputs expresion

Returns length of string s.

Appends string s2 to string sl.
Compares string sl with string s2.
Copies string s2 to string sl.

Opens a file,

Closes a file.

Now let’s see what happens if we rewrite our previous program using the standard function
gets(s) for input, and put(s) for output.

main()

{
char
gets(str),;
puts(str);

}

str[128];

As you can see here, we can use standard functions to make our programs much simpler.
For further details on using standard functions, see the function reference in Part 2 of this

manual,

3-6 Defining functions

3-6 Defining functions

Function definitions and program modules

Besides the standard functions, the C programming language lets you define your own
routines as functions to be called by later programs, We have seen a hint of this already
in the “main()'' first line of our programs to define them as main functions.

Using the procedures presented here, you will be able to break large programs down into
modules and then call up each module from the main{) function. This means that you
will eventually build up your own library of functions that you can call up from various
programs as you need them.

Creating functions

The following is the format for function definition:

function type declaration function name (arguments)
argument type declaration;
{
declaration of variables used in function;
statements

............................

function type
This part of the function declares the type of data that will be returned by the function.

This line may be omitted if the value to be returned is an integer (int) or if there is no data
returned. ' '

function name

You cannot use reserved words as function names, and you cannot use names already used
for standard function names. The following is a table to reserved words.

auto {default) float register struct (volatile)
break do for return (switch) while
{case) double goto short {typedef)

char else if (signed) union

(const) {enum) int sizeof unsigned

continue extern long static void

Chapter 3 Introduction to C

arguments

Arguments are used to pass values to the function when it is called. If no values are passed,
the arguments can be omitted. If the arguments are omitted, the following argument type
declaration is also omitted.

Argument type declaraction
Declares the types of the arguments specified above.

Statements
The portion of the function between the braces is executed when the function is called.
Use the same format as that which we have seen for our main() programs.

Sample functions

For illustrative purposes, lets write a program that squares all integers from 1 through 10,
with the actual squaring calculation being performed by a function. We will write one
program that returns integer values and another that returns floating point values.

Returning integers

maini()
(
int i;
for(i=1; i<=10; i ++)
printf(”(%d)"2=%d~n", i, isquare(i));

isquare(x)
int x;
(

return (x%xx);

3-6 Defining functions

Returned values

The function isquare that we have defined receives the argument, squares it, and then returns
the squared value. The line ‘‘return(x * x)’ instructs the computer to square the value of
“x" and return it to the main{) function.

When the main() function executes isquare(i), the value stored in variable *‘i'’ is passed
to function isquare as argument *“x’’. The *‘return’’ statement in the isquare function then
returns the squared value to isquare(i) in the main() function, and execution precedes to
the printf staternent for outpout.

This execution is repeated for values 1 through 10, and since this program deciares variable
“i” with ““int’’ the returned value is treated as an integer.

Returning double precision values

main()

{
double d,dsquare();

for(d=1.0; d<=10.0; d+=1.0)
printf(”"(%tf)"2=%f~n”", d, dsquare(d));
}

double dsquare(x)
double X

{

return (x*%kx);

This program is identical to the previous one, except that variables are declared to be double
precision. Always be careful to declare variables properly in order to ensure that your program
produces the desired results,

J—

67

Chapter 3 Introduction to C

Recursive function calls

The recursive capabilities of C functions mean that a function may call itself, either directly
or indirectly. The following program uses a recursive function call to calculate the factorials
of entered values, according to the following formulas:

n!=nx*{(n-1)!
=n¥k{n—-1%k(n—2)%. - *k3%k2%1

double fact();
main()
[
int n;
scanf (”"%d” , b &n});
printf(”"%2d!=%e~n",n,fact(n));
)
double fact(x) /¥ FACT function X/
int x;
{
if{x==0)return(1);
return(xxfact(x-1));
} /% Recursive call %/

The following shows a sample execution of the above program:

RUN fexg
20 + Value input
201 =2.432902e+18 + Result

3-7 Local variables and global variables

Local variables

A local variable is one that is declared within a function for use within that particular
function only.
Since such variables are local, you can use the same variable name in multiple functions

without any problem — each variable is treated independently, even though they have the
same name.

Have a look at the program listed below.

3-7 Local variables and global variables

main()
{
int i,
for(i=0; i<10; i++) {
pr();
]
pr()
{
int i;
for(i=0;i<2;i++)
printf(“%d ", i),
}

This program displays ten sets of the numbers 0 and i. Both the main() function and the
pr() function utilize variable *i’* but the computer treats these as two entirely different

variables. In the main() function the value of ‘i’ ranges from 0 through 9, while in pr()
it is 0 or 1 only.

Global variables

A global variable is one that is commonly applied throughout all functions of a program.
Global variables are declared in the line preceding the main() line.
Have a look at the program listed below.

int i
main()
{
for(i=0; i<10; i++)
pr();
]
pr{)
{
printf(”%d”, i);
]

Here, variable ““i”’ is declared before the main() line, so ““i’” will be treated as a global
variable. Consequently, it will retain its current value regardless of whether execution is
in main() or pr(). In this program, variable ‘‘i’’ is assigned a value by the *‘for” loop
‘in main(), and then the value of *‘i’’ is printed by function pr().

Chapter 3 Introduction to C

As a general rule, it is recommended that you do not use global variables. This is because
global variables restrict the flexibility of variables in general, and they make the program
difficult to comprehend. If you do decide to use global variables, it is probably best to use

long, descriptive names such as “‘arry_x’’, “‘xcord”’ or “‘ycord’’ to make obvious the type
of value that is stored.

3-8 Pointers and variable storage locations

Entering values

Here we will write a calculation program that performs specific integer arithmetic operations
on values entered via the scanf() standard function. With this program, entry of ““33+21
x” for exampie, would produce the result *‘=54"’,

main()
{
char op;
int X,¥Y.XYy;

Xy=0;
scanf ("%d%c%d” ,6 &x, &op,&y);
if(op=="+") Xy = X + y;

if(op=="-"}) xy = x - vy,
if{(op=="%") Xy = X % y;
if(op=="/7") xy = x [/ y;
if(op=="%") xy = x % y;
printf{”“=%d\n",xy);

)

Variable “‘op’’ is a character type, while “*x”’, “*y*’, and *‘xy’’ are all integer type.
Since we are using the scanf(} function, arguments are expressed preceded by ampersands,
becoming “‘&x"’, “‘&op’’, and “‘&y’’. In C, an argument such as *‘&x’’ represents the loca-
tion in memory that the contents of variable ‘*x’’ are stored. It is called an address.

The scanf() function understands arguments to be addresses, and represents the value stored
at the address within the expression. See the Command Reference for detailed information
on the scanf() function.

The line “*scanf(” Yod %c%d”, &x, &op, &y) ;”’ accepts input of integers for variables ‘‘x”’
and ‘“‘y"’, and a character code for variable “‘op’’.

The execution of the next statement depends on the characters assigned to variable ‘‘op’”.
If it is a plus sign, the first *‘if”’ statement is executed, if it is a minus sign, the second
“9f’7 statement is executed, etc.

Finally, the printf() statement displays the value of ““xy’’ which is the result, no matter
which arithmetic operation is performed.

70

3-8 File input and output

3-9 File input and output

Here we will write a program that writes the character string “abcdefg ~ nABCDEFG N\ n"
to a file named “a.dat”, and then displays the string, character-by-character.

/% #include "stdio. h” %/
main()
|
int c¢;
FILE *xfp;

fp=fopen{(~“a.dat”,6“w");
fprintf(fp,”abcdefg "nABCDEFG~\n") ;
fclose(ip);
fp=fopen(“a.dat”,"r");
while((c=fgetc(fp)) !
putchar({c};
fclose(fp);

EOF)

)

The line *“FILE *fp ;”’ in this program declares “‘fp’’ points to a FILE.

Unlike standard C, the interpreter of the PB-2000C allows all standard functions and built-
in functions to be used without declaration. Therefore, the fopen{) statement which is gener-
ally required in the FILE declaration is not necessary with the PB-2000C.

The line “fp=fopen(”a.dat” , "w”);"’ specifies a filename of ‘*a.dat’’ and a mode of “w"".
Here, the “‘a.dat’’ file is a write file which will be written to via variable ““fp’’. The follow-
ing shows the three modes that can be specified.

w — write from the beginning of the file, erasing any previous file contents,
r — read from the beginning of the file.
a — append at the end of a file

“fprintf”’ in Line 8 of the program writes a character string specified by the first argument
to the file.

“fclose(fp)’’ in Line 9 of the program closes the open file.

Line 10 reopens the “‘a.dat™ file, but this time in the read mode.

Lines 11 and 12 employ a “‘while’’ loop to read data via ‘‘fp’’ character-by-character from
the file and assign it to “‘c*’

The putchar(c) function displays the characters.
The loop is continued until EOF (end of file) is reached. At that time the “‘while’’ loop
is exited and fclose(fp) is executed to close the file and end the program.

n

i:

Chapter 4

Sample T his chapter includes a

number of short pro-

Pr.ograms | grams that show you

the graphics and mathematical

capabilities of the PB-2000C.

Try out some of these programs

and you gain valuable experience

in programming debuggng oper-
ations.

Chapter 4 Sample Programs

4-1 Prime numbers

This program displays all of the prime numbers for an entered value. The program does
this by applying what is known as the “‘Eratosthenes method*’. The following shows some
of the essential formats and their functions.

Format Function

nc = ert(n, array);

int n¢ n; Enters prime numbers into array.
int array|]; This program is limited to the following range:
1 < n<2000.
main{)

{

ert
int

int prime[1000];
int i,n,nc;

printf(“N(2<N<2000)=7");scanf{"%d”, 6 &n);
nc=ert{(n, prime);
printf(”"N prime=thd\n”, nc});
for(i=0; i<nc; i++)
printf(“%8d”, prime[i]);

{n,p) /% Eratosthenes method >/
n,pfil;
int i,j,k,nn;
nn=0; p[0]=2;
for(i=1,j=3;j<=n; i++,j+=2)

plil=];
for(ji=1; j<=i; j++)}

if(plil)t

pl++nn]=p[j];
for{k=j+p[j]; k<=i;k+=p[j])
pik]=0;

]
return{nn);

"

n¢ = prime numbers in values less than n.

4-2 Memory display

The following shows a sample execution.

Input Dispiay
RUN [exg N2<N<2000) = 7__
10 [exg N prime = 4
2 3 5 7
Ready

4-2 Memory display

This program displays the memory contents from a beginning address to an ending address,
both entered from the keyboard. Memory contents are displayed in hexadecimal format.
In this program, an integer is used instead of a pointer, but the integer is treated as a pointer
thanks to a forced conversion known as a cast. If **x’* is an integer variable, and “p’is

TP

a character type pointer, the following would substitute the value of “‘x*’ for pointer ““p**:
p={char *)x;

In addition, the contents at address Ox4000 are assigned to pointer *‘c’’,
c= % (char)0x4000;

The format “*k{char *) i&0xff’* stands for 1 byte of data at address ‘i, Bit AND is
performed on Oxff to extract the lower 8 bits.

main ()
{

int i, st, ed:

printf(”"Start address(hex)?"”);
scanf ("%x", &st);
/% Entry of beginning address in hexadecimal format %/
printf(”"End address(hex)?");
scanf ("%x", &ed});
/% Entry of ending address in hexadecimal format %/

for (i=st; i<ed; i++)¢{
I F(1%8==0)printf("~n%aX, ", i);
/* Address display */
printf(”%02X “, *x{(char*x)i&0xff):

/% Contents display */

75

Chapter &4 Sample Programs

The following shows a sample execution.

Input Display
RUN g Start address(hex) ?_
2000 fexg) End address(hex) ?__
2010 [exg) 2000 | FF FF FF FF FF FF FF FF
2008 | FF FF FF FF FF FF FF FF
Ready
Important

The actual display will differ in accordance with memory contents.

4-3 Perpetual calendar

With this program, you enter a month, date, and year, and the computer telis you what
day of the week that particular date falls on. This is accomplished by assuming that January
1, 1987 falls on Thursday, with all other dates being determined on that basis. The follow-
ing is a summary of the execution of the calendar program.

1. Computer initializes the days of the week and the number of days in each month.

2. Operator inputs month, date, and year. .

3. Computer determines whether or not the entered year is a leap year, and calculates the
number of days from January 1 to the specified date.

4. Computer determines what day of the week January 1 falls on for the specified year,
and calculates the day of the week for the entered date.

5. Computer displays the day of the week for the specified date.

The following table shows the variables and functions used in this program.

Variables Functions

x=wday (vear); Returns the day of the week that January I of
“vear’’ falls on (0=>Sunday; 1=Monday; -
6==S8aturday).

l=leap {year); Returns a leap vear flag {0=normal; 1=leap
year).

18

4-3 Perpetual calendar

The following is a list of the calendar program.

#define INITYEAR 1987 /% Initial Year number for Calc. %/
#define WDAY198B7 4 /% Week day Number of 1987.1.1 */
char *xwday|[7]; /* Week day name */
int mo[12]; /% Days of month %/
main{)

{
int year,month,day, wdayn, totalday=0,i;

wday[0]="Sun”; wday[1]="Mon"”; wday[2]
="Tue” ;wday|[3]="Wed”; wday[4]="Thu";
wday[5])="Fri” ;wday[6]="Sat"”;
mo[O0]=mo[2]=mo[4]=mo[7]}=mo[B]=m0[9]=
mo[11]=31,
mo[3]=mo[5]=mo[8]=mo[10]=30;
printf(”“Input YEAR ?”);scanf (”"%d",
&year) ;

printf(”Input MONTH?”);scanf ("%d",
&month);

printf(”“Input DAY ?”});scanf("%d”, &day);

if(leap(year}) mo[1]=29;
else mo[1]=28;

for(i=0; i<month-1;i++) /% Total days to month tst %/
totalday+=mo|[i];
totalday+=day; /% Total days from Jdan. 1st %/
wdayn=(totalday+wdayl_1(year}-1)%7;
/% Set weekday number >/

printf(“%d.%d.%d=\"%s\"" year,month,day,
wday [wdayn]) ;
}

int wdayl1_1(year) /% Return the week day
imt —year; number of Year of 1st %/

{

int y,wllday;
long tday =0;

11

Chapter 4 Sample Pragrams

if(year>=INITYEAR) {
for (y=INITYEAR; y<year; y++) |
if(leap(y)) tday=tday+366,
else tday=tday+365;
}
wllday=(tday+WDAY1987)%7,
}
else |
for(y=INITYEAR-1;y>=year ;y--) {
if(leap(y)) tday=tday+366;
else tday=tday+365;
)
wllday={((tday+6)/7%x7+WDAY1987-tday)%7;
}
return{ wllday);

}

leap(y) /% Return Leap Year (0 : not LEAP) %/
int v
{
return({(y%4==08&8& y%100!=0),, y%400==0) ;
)

The following shows a sample execution of the program.

Input Display‘
RUN Input YEAR 7 _
1989 [Exg Input MONTH 7__
6 fex Input DAY 1
19 {exe] 1986.6.19="Mon"”
Ready

18

4-4 Since curve/cosine curve program

4-4 Sine curve/cosine curve program

The program presented in this section displays a sine curve and cosine curve in graphic
form. The y-coordinate values for the sine curve and cosine curve are calculated according
to the following formulas:

ys=15.5—-15.0%sin (3.0 %x); sine curve coordinate values
yc=15.5-15.0% cos(3.0%x); cosine curve coordinate values

The x-axis is established at y=15 on the display, making this the central axis of the graph,
with the minimum value being 0 and the maximum 30. To each of these values, 0.5 is added
because C simply cuts off decimal portions when substituting integers for floating point
values. Adding 0.5 makes it possible to obtain more accurate values through rounding.

main()
{

int X, ¥s8, ycC;

angle(0);

clrscr();

line(10,0,10,31); /% Vertical axis */

line(10,15,180,15) ; /% Horizontal axis */

for(x=30;x<180;x+=30)
line{x+10,13,x+10,17); /% Step marker display */

for{x=0;x<150;x++) |
ys=15.5-15.0%sin(3.0%x); /% Calculation of sine %/
yc=15.5-15.0%cos (3.0%x);
/% Calculation of cosine %/
line(x+10,ys,x+10,ys); /% Display of sine wave */
tine(x+10,yc,x+10,yc); /% Display of cosine wave %/

The following is a sample execution of the above program.

Input Display

78

Chapter 4 Sample Programs

4-5 Simple Martian animation

The program presented here creates a ‘“Martian’’ figure on the display and then moves it
up, down, left and right in response to input from the keyboard. The Martian is drawn
using a 5 x 6-dot matrix, the position of which on the display is defined by the location
of the upper left dot of the matrix,

x, y)

The following are the variable functions used in the program.

displ (x, y); Displays Martian figure.
disp2 (x, y); Displays Martian’s feet.
delp (x, y); Erases Martian.

The following shows the complete program.

main()
{
int xx, yy, d, inx,iny;
cirscr(); /% Clears display */
XxXx=50;yy=8;
disp2(xx,yy); displ1(xx,yy);
/% Initial Martian display */
for(;) |
inx=iny=0;
d=getch(); /% Key code input to d */
if(d=="4") inx=-5;
if(d=="6") inx=5:
if(d=="8"') iny=-5;
if(d=="2") iny=5;

4.5 Simple Martian animation

delp(xx, vy); /% Erase Martian */
XX+=1nXx; yy+=iny, /% Next Martian position */
disp2(xx, YY) /% Feet display */
dispi(xx, vy) ; /% Martian figure display */

]
clrscr();

}

displ (x, y)

int x, y;.

[
line(x+2, y, x+2, y+1),; Y+ +
line(x+1, y, x+3, Y),. Y++,
line(x,y, x+1, Vy),
line(x+3, vy, x+4, Yy); y++.
line(x,y, x+4, Yy);
I

ine(x+1, y, x+1, y+1);
line(x+3, vy, x+3, y+1);

)

disp2 (x, vy)
int x, vy,

{

linec(x, y+5, x+6, y+5);
line(x+1, y+5, x+1, y+5);
line(x+4, y+5, x+4, y+5);
}
delp(x, vy)

int x, y;
{
int i;
y--,
for(i=0;i<7;i++) |
linec{(x-1, y, X+5, y),; y++;

}

The Martian appears on the display when you RUN this program. The Martian moves left

when you press (4], right when your press (8], up when you press (8], and dowm whemn you
press (2.

)

Chapter 4 Sample Programs

4-6 More Martian animation

This program presents a variation on the Martian theme, with a figure that it a little more
refined. With this program, however, the Martian moves left and right in a frame,
The following shows the basic Martian figure,

(x, y)

The following shows the variable functions used in the program.

init_disp (x, y); Displays Martian figure.
disp_leg (x, y); Displays Martian’s feet.
cls_leg (x, y); Erases Martian’s feet.

incx (x, y); Moves Martian in direction x.

The following shows the complete program.

main()
{

/* Displays frame x/

4-6 More Martian animation

init_disp(x,y);

disp_leg(x,y);

for(i=0; i<40Q;
cls_leg(x,vy):
disp_leg{x+1.,y);
inex(x,vy);

P ++,

}

init_disp(x,y)

ine(x+3,y,X+2,Y¥});
ine(x+4,y,x+4,y);

int X,V¥;

{
line(x+3,y.x+3,y); vy++;
line(x+2,y,x+4,y); y++;
fine(x+1,y,X+5,y); y++;
line(x,y,x+6,y); Y++,
line(x+1,y,X+5,y); y++;
b
bi

}

disp_leg(x,y)
int X,¥;

f

fine(x+1,y+6,x+1,y+86) ;
line(x+4,y+6,x+4,v+6):

}

clis_leg(x,vy)

int X,Y,

{

linec(Xx,vy+6,x+7,vy+6);

]

incx(x,y)

int X,¥Y,;

{

X++) |

/% Martian figure display */
/* Feet display */

/% Erases feet %/
/% Feet display */
/% Moves Martian+1 X/

Chapter 4 Sample Programs

line(x+4,vy,Xx+4,y);
linec(x+3,y,x+3,y);
line(x+5,y+1,x+5,y4+1);
linec(x+2,y+1,x+2,y+1);
linec(x,y+3,x,y+3);
linec(x+1,y+2,x+1,y+2};
linec(x+1,y+4,x+1,y+4);
line(x+6,y+2,x+6,y+4);
line{(x+7,y+3,x+7,y+3);
line{(x+5,y+5,x+5,y+5);
linec(x+4,y+5,%x+4,y+5);
fine(x+3,y+5,x+43,y+5);
linec(x+2,y+5,x+2,y+5);

When you RUN the program, the Martian moves left and right within the frame.

84

F 4-7 Pseudo-random number generator

4-7 Pseudo-random number generator

This program defines ““rand()’ function to generate pseudo-random numbers within the
range of ¢ through 1 to create a bar graph.

At the beginning of this program the three global variables **__seedl”’, *‘__seed2”, *‘_seed3”
are initialized with any value within the range of 1 through 30,000. The following calcula-
tion is used each time to generate the random numbers:

r=918999161 % _seed] + 917846887 k __seed2 + 917362583 % _seed3
_seedi = 16555425264690 % _seedi %o 27817185604309;
r=16555425264690*% r%27817185604309;

return (r/27817185604309);

The cycle of the random numbers generated by the above is approximately 6.95 x 102,
This method is taken from page 188 of ‘‘Applied Statistics’’, by B.A. Wichmann and 1.D.
Hill.

The ““main()’’ program uses the ‘‘rand()" function to generate random numbers. It then
uses the numbers to create a bar graph, with bars for the rand 0~0.1,0.1~0.2.... 0.9~ 1.0.
In the program, the “‘rand()’’ function is called from ‘‘main()**, and the generated values
are displayed in a bar graph. 1,000 values are generated by the for loop. To interrupt
execution part way, press the key.

int x[12];
main()
{

int [

double rand();

clrscr (),
for(i=0; i<1000; i++4) {
j=10%xrand();
/* Assigns random values from j=0 through 8 %/
X[j]++; /% Counts number of random values */
line(x[j].i*3,x[j].i*3+2};
/% Displays bar graph */

#

Chapter 4 Sample Programs

/x Store following in file “rand.c” %/

int —seed1=1000,_seed2=12000,_seed3=28000;

double rand()

{
double r;
—seedl1=(_seed1%177)*x171-(_seed1/177)%2;
if (_seed1<0)_seed1+=30269;
—seed2=(_seed2%176)%172-(_seed2/176)%35;
if (_seed2<0)_seed2+=30307:
—seed3=(_seed3%178)%x170-(_seed3/178)%63;
if (_seed3<0)_seed3+=30323:
r=_seedi1/30269.0+_seed2/30307.0+_seed3/

30323.0:

while(r>1.0)r-=1.0;
return r;

The portion of the program following the line: /% Store following in file “‘rand.c’’> %/
will be used in the ““Approximation of pi’’ program in the following section. Use the following
procedure to store this part of the program in a separate file named “‘rand.c’’.

[

. Enter the MENU mode.
- Press the function key under [name] and give a name to the file that contains the

pseudo-random number generator. Here, we will use the filename ‘“‘random.c’’,

. Press the &% key and press the function key under [save .

The computer will ask you if you wish to save the file ‘‘random.c’’. Change the name
of the file to “‘rand.c’’ and press the [key. This creates a duplicate of the original file
under the new name.

Return to the MENU mode and enter the editor for the file ‘‘rand.c’’.

. Delete all of the lines in the program above the line: **/ % Store following in file “‘rand.c”

X/

. Exit the file ““rand.¢’’ to save it.

4-8 Approximation of pi

4-8 Approximation of pi

This program also uses the ‘‘rand()’ function to approximate the value of pi.

To generate random values, this program uses the section of the program in 4-7 following
the remarks /% Store following in file “rand. ¢ ” */. Be sure that you follow the instruc-
tions in the previous program to create such a file before attempting to use the program
described here. The first line of the program described here is *“ #include”rand. ¢’’*, which
tells the program to include the ‘‘rand. ¢’’ file in its execution. This program also employs
**srand(seed)’’ to initialize the random number stream. This tells the program to change
the conditions under which random values are generated each time the program is executed.

Otherwise, the same values would be generated each time the program is executed. Initial
values *‘__seedl”’, *‘__seed2’’, and ‘“__seed3’’ causes random values to be generated in
different sequences. The function ‘‘srand(seed)’’ uses seed as the seed for a new sequence
of random values. The seed is initialized with any value within the range of 0.0 through 1.0

The program uses the Monte Carlo Method to approximate the value of pi. This method
uses randomly generated values to determine the area of a figure.

A 1 x1 square is inlaid with (%, y) points determined by the generated values. If a sufficient
number of values are inlaid, it is possible to calculate the approximation of pi. The elliptical
equation is x*+y’=r’, so points within the range of x*+y*<1.0 fall within the ellipse.
These are counted and divided by the total number of points to calculate pi.

For example, if the points in the quarter circle with radius 1 are counted and divided by
the total number of random values generated, 1/4 of the area of the circle can be deter-
mined, which is =/4.

e

7 e

S=at S/4="/4
=gx1?

o

e
?

The complete program is listed below. It represents the inlay of random points graphically,
and shows the approximation of pi according to the current number of random values gener-
ated in the upper left of the display.

11—

ted, the message ™ Input seed0:
prompt for entry of a value. The starting point of the random number generation is deter-
mined by this value. Next a frame and ellipse are displayed, random values are generated,
and the approximation of pi is displayed along with points. The for loop in this program
is an endless foop. It will continue looping until the batteries go dead, or until you inter-
rupt execution by pressing the key.

a7

Chapter 4 Sample Programs

#include”rand.c”
main()
{

double x,y,count,inc,rand(),seed,srand();
int xx, yy;

printf(”“input seed{(0.0<seed<1.0)");
scanf("%f"”, 6 &seed) ;

srand(seed);

clrscr();

count=in¢c=0.0;

line(99,0,130,0); /* Frame display */
line(99,31,130,31);

line(99,0,99,31);

line(130,0,130,31);

for{x=0.0;x<30.0;x+=0.5){ /% Ellipse display */
yy=sqrt(900-x%xx)+0.5;
XX=xXx+100;

line(xx,yy,xx,yy),;
-}
for(; ;)i
X=rand(); y=rand{); /% Assignment of x, y values to x, y */
XX=100+x%30; yy=1+yx30;
count++;
i f((xkx+y*ky)<1.0)inc++;

/% Determination of point fatis within ellipse */
gotoxy{(0,0); /% Moves cursor to (0, 0) %/
printf(“"%lf\xn”,incx4.0/count);

/% Approximation of pi display */
Pine(xx,yy,xx,yy); /% Display of point in frame */
}
)
double srand(seed); /% 0.0<seed<1.0 %/
double seed;
{
_seedi=seed % 30000.0;
if(_seed1<30000)_seed1-=30000;
while(_seed1<0)_seed1+=30000;
—seed2=rand()*x30000;
if{_seed2==0)_seed2=1;
_seed3=rand()*30000;
if(_seed3==0)_seed3=1;

4-9 Mean and variance

49 Mean and variance

The program presented here reads values from a file and then calculates the mean and vari-
ance of the values. The file that the program reads from contains multiple values separated
by spaces or carrier returns, The file to contain the data is created using the [data] func-
tion, and it is named using the [name] function.

The following are the mean and variance formulas , in which “*xi”’ represents the ith numeric
data item, while ‘‘»’’ represents the number of data items.

Mean = m={x1 + x2 +-+xn)/n
Variance & v=1{ (x1—m)*+ - + Gm—m) }/n

The following shows the complete program.

main()
{
FILE xinfile;
int i, n;
char fname[32];
double sum,mean,v,Xx;

printf(”“Input FILE name 7"},
scanf("%s”,fname); /% Filename input %/

if((infile=fopen(fname,”r”)}==NULL)
exit(); /% Open file %/
sum=0.0;n=0;
while(fscanf(infile,”%I|f”, b &x)!=EOF)

{

Sum+=Xx;
n++;
J
meanssum/n; /% Mean calculation */

fclose(infile);

if({(infile=fopen(fname,”r”))==NULL)
exit():
for{(v=0.0,i=0;i<n;i++)

(
fscanf(infite, "%l f", K &x};
vi=(x-mean)*k(x-mean) ;

]

Chapter 4 Sample Programs

v/=n; /% Variance calculation */
fclose(infile);

printf(“Data number=%d-~nMean Value=%If>n
Dif.Value=%Ilf\xn”,n,mean,v);
while(getch()=="\n");

The following shows a sample execution of the program. First comes creation of the data file.

Input: [data |
12.4 [
39.1 &
65.8 (ex
88.1 [
&5
[mame]

data [exg

The following shows actual program execution.

Input Display

RUN [Input FILE name ? __

data kg * Data number =4
Mean Value=51.350000
Dif. Value=806.632500

80

4-10 Solution of simultaneous linear equations

410 Solution of simultaneous linear equations

The program presented here provides solutions for simultaneous linear equations, using
the simplest of methods available, Gauss® Method of Elimination.

This program solves the following nth degree simultaneous linear equations when coefficient
a[i}{j]is given, for n unknowns x0, x1, x2, -+ Xn-1.

afO0][O0]-x0o +a[0][1]*x1i + ... +a[0}[n—1]*Xa-1 =a[0][n]
a[1][O0] xo+a[1][1]-x1+ ... +a[1][n—=1]+xa-1 =af{l][n]

...

an-1][0]+x0 +a[n—=1]f1]-x1 +...+a[n—1}[n—1]+xn-1 =a[n—1][n]

Execution of the function *‘gauss(n);’’ performs the following substitutions for solutions
x0, x1, x2,, xn—1.

al0][n] . X0
afl1][n] - X1
a[2][n]) — X2
afjn—=1][n} - Xn-1

When you RUN this program, the computer first asks you for the number of unknowns
“n”. Then n x (n + 1) coefficients are entered by the operator and the solutions are calculated.

#define MAXA 10
double a[MAXA][MAXA];
main()
{

int n,i,j;

printf("N=?"),;
scanf("%d”, &n}.; /% Entry of number of unknowns /
for(i=0; i<n;i++){
for(j=0; j<n+1; j++){
printf(”"a[%d][%d]=2",i,j);
scanf ("%l f”" , &a[i][j]);
/% Entry of number of coefficients */
}
!
gauss(n); /% Gauss’ elimination */
for(i=0;i<n;i++)
printf(“%8.2f",a[i]l[n]);

91

Chapter 4 Sample Programs

gauss(n)
int n;
¢

int i,],k;

for(k=0;k<n;k++){
for(j=k+1;j<n+1;j++)
a[k][jl/=alk][k];
for(i=0;i<n;i++)
if(il=k)
for(j=k+1;j<n+1;j++)
ali)[i]l-=a[i][k]l*xalk][]];

The following shows a sample execution of this program.

Input Display
RUN [exg N=1?_
2 g a[0][0] = ?_
1 Exd a[0l[1] = 7__
1 fxg a[0}[2] = 7_
2 [exe] al1][0] = 7_
1 [exg af1]1[1] =7?_
-1 a[l](2]1="7_
1 Exg 1.50 0.50
Ready

92

Chapter 5

everything you need
to know about the
PB-2000C’s C interpreter. It con-
tains important information on
C in general, as well as opera-

C |nter‘pr\eter\ T his chapter contains

tions that are characteristic 10
the PB-2000C.

Chapter 5 C Interpreter

S-1 Comments

Comments are non-executable lines of text that can be included anywhere within a pro-
gram as notes or memos. Comments help to make yvour programs easier to understand.
With C, comments are included between the characters /% ** and “* %/’ as shown in the
following example,

/% Program to output “HELLO!” %/
main()
{

printf(”"HELLO! ") ;

5-2 Reserved words

Reserved words are words that C sets aside for special purposes. Whenever the computer
comes across such words, it performs certain functions, so these words cannot be used for
variable names or function names. If you try to use a reserved word for a variable or func-
tion name, an error will occur. Beside the reserved words shown here, the standard function
names listed in Section 5-13 of this manual also cannot be used.

In the following list of reserved words, those marked with an asterisk also cannot be used
in the interpreter of the PB-2000C.

auto default* float register struct volatile*
break do for return switch* while
case* double goto short typedef*

char else if signed* union

const* enum* int sizeof unsigned

continue extern long static void

5-4 Assigning variable names and function names

5-3 Data types and lengths

The following table shows the data types and their respective lengths for the PB-2000C
interpreter. These are almost identical to the data types used for variables and constants
on personal computer compilers.

Type declaration PB-2000C interpreter
char 8 bits signed
short 16 bits
int 16 bits
long 32 bits
float 32 bits
double 64 bits

5-4 Assigning variable names and function names

All variables must be declared before they can be used within a program. The following
rules apply for variables, constants defined using the # define statement, and function names.

¢ The first character of a variable name must be an alphabetic character (A ~Z, a ~ z}, or
an underline.

¢ Second and subsequent characters in a variable name may be an alphabetic character,
underline, or number. The computer differentiates between upper case and lower case
letters when matching variable names.

* Reserved words cannot be used as variable names, though a part of a variable name may
be a reserved word.

* The length of a variable name is unlimited, but only the first eight characters are used
to discriminate one name from another. This means that ‘‘abc012345”’ would be consi-
dered identical to ‘‘abc012344"", since the initial eight characters of either variable name
are the same.

Examples of legal variable names

var XX
My__Name count
judgement ql_2_35
V160 int__32

Chapter 5 C Interpreter

Examples of illegal variable names

123

3A :|~ First character not a letter or underline.
#count

switch :]— Reserved words

gets s€ .

C-1 Hyphen is illegal character.

5-5 Data expressions

Character constants

Characters for the constant type char should be enclosed within single quotation marks
as shown below:

I'Cf l8l f\nr

Just as many larger computers, the PB-2000C represents characters using ASCII codes. The
"N n’ in above examples is called an escape sequence. Escape sequences are used to express
characters that cannot be represented using letters or numbers. The following is a table of
all ASCII codes available.

: EMERENEMENENENE
S ol BB AR A & SE S e (B
L]
g = =l 18l Tl I=l _1&l T8l 1=
m (59 Moy | B |S] o] R0 =
] [+ [= — o ~” -3 wy
el 0 - — — — — —
m) H_2W_lmgu2u2|=2 IR GIE S
o & = & & - = AL
& OB B ELE B EEEE
o - oo [=23 = — () ”y
r~ ~ -~ ~] oG o an

32
13

2
SP
I

1
Fis

[2] [18] [34]
[5] [ar] [37]

LINE
(END)

[1] [7]

[0]
(*D")| (pEL)
GoR) | (n8)

LINE
(DEL)

(HOME.

0
1
2
3
4
5
6
7

Character code table
HEX| O

Character codes within C programs are handled as shown below.

Lo
Z%mm

]M
A,cm4m

~| =
— m.m
gl E| =
%aCO
S| B3| E
S IR
o | K| =
| = | &
3|35
el 5| =
DO Q

g7

Chapter § C interpreter

Even for char type data, internal operations are performed using binary notation. For
example, the characters '3’ and ‘A’ would be represented internally as:

In addition, the computer uses control characters, such as: NL, HT, BS, CR, which are
expressed in C as escape sequences.

Code Name Meaning

Na Bell (BEL) ' Sound buzzer.

Nn Newline (NL) Carrier return + linefeed
Nt Horizontal tab (HT) Horizontal tab

~b Backspace (BS) Backspace (one character)
T Carrier return (CR) Carrier return

N f Form feed Change page

N b e, Character “*

N e Character ““**

L N Character ““"*’

N0 Null Equivalent to 0.

\nnn Octal notation Character code for octal value nnn.

The following shows some example control characters (1-byte constants).

f\nl l\bl’ '\\l 1\033f

ﬁ_

5-5 Data expressions

Integer constants

Constants of the int type can be broadly classified as decimal, octal, and hexadecimal. The
letter ““L’* or “‘I”* must be affixed for long type integers.

Decimals
Example: 1121 -~ 128 68000 123456789L (for long)
Note: Leading zeros cannot be used to differentiate between
decimal and octal notation.
Octal

Example: 033 0777 012 01234567L (for long)

Note: Leading zero required for octal notation.

Hexadecimal

Example: 0x1B 0xFFFF 0x09 OxfEFfffL. (for long)

Note: Ox or 0X required for hexadecimal notation,

The following show the ranges of each type of notation. Negative integers are accomplished
using unary minus operators with unsigned constants.

Decimal constants

int 0 -~ 32767

long 32768 -~ 2147483647
Octal constants

int 00 ~ 077777

unsigned int 0100000 ~ 0777177

long 0200000 ~ Q17777777777
Hexadecimal constants

int 0x0000 -~ Ox7fff

unsigned int Ox8000 - Oxffff

long ox10000 ~ Ox7ffrffff

The ranges defined above also apply to entries for the scanf, fscanf, and sscanf functions.

Chaptar 5 C Interpreter

Floating-point constants and double precision floating-point constants

Decimal values can be defined as float type or double type constants using the format shown
below. Exponents are indicated by the letter *‘E” or ‘‘e”.

Example: 3.1416 —1.4142 1.0e—4 1.23456E5
The following shows the ranges of float and double.

float 0, *le—63 ~ +9.99999% +63
double 0, £1e—-99 ~ *9.999999999% + 99

String constants

String constants are contained in double quotation marks. The structure of character strings
is basically the same as that for the compiler, with a 0 (null) being affixed at the end. The
following shows an example of a character string:

“How do you do?"’

5-6 Operators

C employs many of the operators not available with BASIC, FORTRAN and Pascal.

" X1

Operators are represented by such symbols as ““+ 7, “*="", *x”, and **/”’, and they are
used to alter values assigned to variables. Basically, the PB-2000C interpreter supports the
same operators as the standard C compiler.

Precedence

When a single expression contains a number of operators, precedence determines which
operator is executed first. Note the following:

a+bXkc

In this case, the operation b c is performed first, and then the result of this is added to
“‘a’’, This means that the precedence of multiplication is higher than that of addition. Note
the following example:

(a+b)*kc

In this case, the (a + b) operation is performed first, because it is enclosed within parentheses.

100

5-6 OQOperators

The following table shows all of the operators used by C and their functions, explained
in their order of precedence.

Primary operators

(~), func (~) Parenthetical, function argument operations.
x[~], vI-1[~] Specify array elements.

st. memb Specify structure members.

pst— >memb Specifies structure members using pointer.

Unary operators

* px Specifies contents indicated by pointer.

&x Address of variable x.

+x, —Xx Positive/negative value x.

+ +x, ——X +1/ —1 before using variable x.

X+ +, x—— +1/—1 after using variable x.

~X NOT performed on each x bit (inversion).

Ix Logical NOT (if x< >0, 0 returned; if x=0, 1 returned).

{type) x Forced conversion/specification of x (cast operator).

sizeof (x) Variable x byte length value, sizeof(type) illegal.

Binomial operators

xXky, x/y, X%y Multiplication, division, modulus (remainder of x
divided by y).

X+y, Xx—y Addition, subtraction.

X< <Y, X> >y x left bit shift/right bit shift y times.

X<y, X< =y, x>y, x> =y Relational operators (true=1, false=0).

X==y Equality (unequal=0, equal=1).

xl=y Inequality (unequal=1, equal=0).

x&y Bit AND of x and v.

"y Bit XOR of x and y.

X1y Bit OR of x and y.

x&bey Logical AND of x and y (1 if neither x and y are 0).

X1y Logical OR of x and y (1 if neither x or y are 0).

Conditional operators (trinomial operators)

x?y:z y if x is true (other than 0), z if x is false (0).

Assignment operators

X=Y Assigns y to variable x,

Xk =yerx=x¥Xy Multiplies x by y and assigns result to x.

XA=yr %=Xy Divides x by v and assigns result tox. }

xWo=y, X+ =y, X— =y, X< < =y, X> > =V, x&=y, X | =y, X" =¥

The following table shows the precedence and associativity of the above operators.

101

Chapter & C Interpreter

Precedence and Associativity of Operators

Precedence Operators Associativity
High (Il — >,. =] eft to right
Unary L~ + 4+, ——, =, (Type), X%, &, sizeof 4= Right to left
g?\t]ilstiig:caﬂon/ *, /, % = [eft to right
31%(:;;1(?{?;11 +, — = left to right
Shift <L, >> = }eft to right
Relational >, <, >, <= =+ Left to right
Equality ==,1= = Left to right
Bit AND & = | eft to right
Bit XOR a = Left to right
Bit OR ' =+ Left to right
Logical AND && = Left to right
Logical OR ¥ = Left to right
Conditional ?: 4= Right to left
Assignment =, +=, —=, *=, /=, other 4= Right to Jeft
Low Order ! =+ Left to right
Important

Data types are ranked as follows, with rank increasing from left to right:

char <int <long < float <double -

In expressions with mixed data types, C will first convert all data to the same type as that
of the highest ranked data included in the expression, and then perform the calculation.
However, the PB-2000C cannot internally convert between unsigned type and long type data.
Therefore, to use unsigned and long type data in the same calculation, you should include
the following cast operators:

unsigned int a;

long b, c;

[T

c=(long) a+b;

102

5-7 Cantrol structures

5-7 Control structures

C program statements that are made up of muitiple execution units are executed in a specific
sequence. A control structure makes it possible to change the sequence of the statement
execution, repeat execution of statements, and cause jumps according to specific conditions.

Statements

The smallest statement unit is a simple expression that contains data, plus an operator or
function call. Such statements end with a semicolon, and are generally used for assignment
of a constant to a variable or to call a function.

x=sin{a+b)~-¢;
printf("x="%10.4%lf ~n", x);
a=b+ (c=getchar());

Compound statements

When multiple statements are enclosed between braces, the computer treats the group as
a single statement. The only difference is that a semicolon is generally not included following
the closed brace at the end of the compound statement.

Statement 1
Statement 2

Statement n

103

Chapter 5 C Interpreter

Control structures for jumps and repeats

The following are the rules that apply to jumps and repeats in C.

Conditional jumps (1)

if (condition) statement Statement is executed if condition is met.
if (condition) statement 1 Statement 1 is executed if condition is met.
else statement 2 Statemnent 2 is executed if condition not met.

Repeat control
while (condition) statement Statement is repeatedly executed as long as con-
dition is met.

for (expression 1; First, expression 1 executed on first pass only
expression 2; (initialization). Then, expression 2 is evaluated,
expression 3) and if true, statement is executed. Next, expres-
statement sion 3 is executed, expression 2 is evaluated, and

the process repeats until expression 2 is false.

do statement while (condition); First, statement is executed, and then condition
1s evaluated. If true, statement is executed again.

Endless loops

The three types of endless loops are shown below. Endless loops can be terminated
by the break statement, return statement, or exit(). The o key can also be used to
manually exit a loop.

for (;;) [... repeat ... }
while (1) [... repeat ... }
.

do [... repeat ... } while (1);
Conditional jumps (2)
if (expression 1) statement 1 If expression 1 is true, statement 1 is executed,
else if (expression 2) statement 2 if expression 2 is true, statement 2 is executed, etc.

else if (expression 3) statement 3

else if (expression n) statement n If all expressions are false, statement n+1 is
else statement n+1 executed.
This else ~ if statement is functionally equivalent
to the standard switch ~ case statement.

104

5-8 Storage classes

Break statement and continue statement

while (1} § Execution of break statement exits while, for, and
.......... do ~while loops. In example, if expression is true,
if (expression) break; loop is exited.
]
while (expression 1) { Execution of continue statement returns execu-
.......... tion to beginning of while, for, and do ~ while
if (expression 2) continue; loop. In example, if expression 2 is true, continue
.......... statement returns execution to statement 1 for
] evaluation.

Unconditional jump

goto label; Causes unconditional jump to location of label.
.......... Though available in C, unconditional jumps are
.......... rarely used.

5-8 Storage classes

Storage classes are used to specify the memory storage area for declared variables, as well
as to specify the scope (range that program can read from/write to).
The following table shows the storage classes, as well as the variables that are available for

each class.
Storage class Variables
auto Used for short-term storage within a program.
static Reserves area throughout execution of program. Values

accessed and acted upon throughout entire program.

register (same as auto) | High frequency access. Variables that are effective for
increasing speed of execution by allocating values to
registers.

extern File-external or function-external global variables.
With PB-2000C, file-external can be another file also loaded
il Memory.

106

Chapter 5 C Interprater

Important

* With the PB-2000C’s interpreter, register variables and auto variables are identical.
¢ The auto variables should be declared at the beginning of a function, as in Program A,

below. Declarations within the execution of a function, as in Program B and Program
C, result in an error.

func(a) func(a)
double a; double a;
{ (

int 1, j, x; int i, j, x;

float fx, fy; printf("" %lf”, a);

long lx, ly; float fx, fy;

Program A — QK

Program B — Error

func(a)
double a;
{
int i, j;
float fx, fy;
for(i=0; i<10; i+ +) |

...............

Program C — Error

108

5-8 Storage classes

¢ File-internal gloval variables cannot be declared as in program A, below. The declaration

should be made as shown in B or C. In these two programs, note that the current scopes
are different,

static int x; int x;
main() main()
{ - (or
}]
A-Error B
main()
{

static int x;

* Even if you load multiple files that declare the same global variables, an error will not
be generated. The variables will be treated as global variables, common to all of the files.
The three following programs: ‘‘maing’’, “subl.c”’, and “‘sub2.c’’ all produce results of

100 and 200.

int x; int x;

main() subl{)

{ {
x=100; printf("In subl "};
subl(}; printf("x=%d \n", x);
sub2(); x+ =100;

})

“mainc”’ ‘*subl.c’’

107

[T e R NP S S—

Chapter & (Interpreter

extern int x;

sub2()

{
printf(" In sub2 ");
printf(""x=%d ~ n",x);

J

(‘s“bz.cl’

This means that variable x is applied commeonly in all three files. Of course, even if the

following change is made in the declaration of “main.c” or "“subl.c’”’, 100 and 200 will still
be output:

int x; - extern int x;

5-9 Arrays and pointers

Arrays

The PB-2000C’s interpreter allows use of arrays up to n dimension in size.
int m2] [12] [31];
Initializing arrays

With the PB-2000C, you can initialize simple variables, but you cannot initialize arrays.
Use the following assignment procedure in place of array initialization.

char *kmonth{12]={"Jan", char *month{l2];
"Feb”, = , "Dec"}; — month[0]="]Jan", month[1] ="Feb”,
------- , Month[l1}="Dec";

108

5-9 Arrays and painters

Pointers

The pointer is a 16-bit variable that holds a variable address.
For example:

X= ¥KpX;

Here, the contents at the address pointed to by px are assigned to variable x.
Note the following:

px=&X;
y=%px;

Here, the address of x is assigned to px, and then the contents at the address pointed to
by px are assigned to variable v.
Consequently:

y=Xx;

You can also use a pointer within a character string to isolate single characters from the string.

main ()
{

char *p;

p="Casio";

printf(” %c %s>n", *p, p);
]

Executing this program produces thé following result:
C Casio

This is because the pointer is pointing at the letter ““C*"
If you want to display the “‘s** of “‘Casio’’ together with the *“C*’, you would rewrite the
original program to:

main ()
{
char *p;
p="Casio";
printf("%oc %oc™\n", *p, *(p+2));

108

Chapter 5 C Interpreter

You can also use the pointer to show each element in an array.

main ()
{
int 1, a[5], *pa;
pa=a;
for(i=0;i< =4;i+ +)
¥pa+ + =i;
for(i=0;i<=4;i+ +)
printf("“ %d”, afi]);
printf(” ~n");
]

Here, each element of array a are expressed as pa. The pointer moves to each successive
element as follows:

pa e a[0]
pa+l e afl]
pa+2 e a[2]
pa+3 e a[3]
pat+4 oo a[4]

Remember that the pointer contains the address of the variable only. This means that certain
cases require that you first reserve a storage area.

main ()
{
char *kpc, c[80];
pc= "abe¢”;
pc=¢;
strcpy{pc, "abcdefgh”);
printf(" %s~n", pc);
)

In this example, array c is declared in order to reserve a storage area for pointer pc and
B0 characters.

1o

5-10 Functions

5-10 Functions

In C, a single unit of work performance is called a function. C has been designed for the
application of functions for simple, yet effective programs, so it is no wonder that the typi-
cal C program is made up of a number of component functions. The activity of ‘*writing
a C program’’ is virtually another way of saying ‘‘writing a C function’’. C also features
a number of built-in functions that are often referred to as standard functions or Iibrary
Junctions. For details on the standard functions, see section 5-13, as well as the function
reference in Part 2 of this manual.

Here, we will cover the fundamentals of functions, and point out a few important precautions.

main function

The main function is the very first to be executed. With the PB-2000C, the main function
never contains an argument. This means that the command input lines cannot be surveyed
within a program, as shown below, so the scanf function must be used for input from the
keyboard.

main(arge, argv)
int arge;
char kargv[];

.......

Function type declaration

A function type must be declared except for functions that return the int type. The following
sample program uses the function dsquare to square double type values from 0 through 10.

main()

f
double d, dsquare();

for(d=1.0; d<=10.0; d+=1.0)
printf(”"(%Vf) "2=%f\n", d,
dsquare(d});
}

doubte dsquare(x)
double X

{

return {(x*%x);

}

L1k

Chapter 5 C Interpreter

As we see above, declarations for the returned values that are not int type must be per-
formed in both the function being called and the function that eventually uses the value.
The following example shows the use of the extern declaration.

extern double dsquare(});
main()

{
double d;

for (d=1.0; d<=10.0; d+=1.0)
printf("{(®lf)*2=%fn", d,
dsquare (d));
}

double dsquare(x)
double x;

{
return (x%x);

J

Note the other important precautions:

e The PB-2000C also allows recursive recall.
s The void function can also be declared.
 Function pointer declaration as shown below cannot be performed.

main(}
{
int pr(), (kpr_p)();

pr_p = pr;
pr();
(kpr_p)();
j
pr()

{ printf("In pr_func>~n"); }

¢ Standard functions can be used without type declaration. Standard C compilers require

pod U LGS QRN Lut. LU LS QU W Y et B b

used, but the PB-2000C does not require such header files.

ne

5-11 Structures and unions

5-11 Structures and unions

C lets you collect various data items, even those of different types, and group them together
under a newly defined data structure.

struct identifier [structure declaration}

For example:

main()
(
struct dat |
int month;
int day;
13

struct dat x;

struct dat y;

x.month=12;

X.day=16;

y.month=10;

y.day=21;

printf(” %dm %dd~n", x.month, x.day);

printf(” %odm %dd ~n”, y.month, y.day);
}

Here, a data structure is declared under the name (commonly called a fag in this case) ““dat’’,
and then structure dat is assigned to variables x and y. The data assigned to the items
(commonly called members) inside of the x, y structures are expressed using the following
member operators:

x.month
X.day
y.month
y.day

Another object that can contain data of different types is the union.

union identifier {structure declaration}

13

Chapter 5 C Interpreter

The union lets you store data of different types in the same location.

main{)
{

union dat |

int i;
char ¢;
double d;
Fx;
x.1=123;
printf("” %d"”, x.1);
X.c="A';

printf(” %c”, x.¢);
X.d=123456e—12;
printf(” %e >~ n", x.d);

The difference between struct and union is that there is only one x variable in the case of
union.

Note the following precautions when using structures and unions with the PB-2000C.

* You cannot initialize structures and unions. Initial values must be assigned.
* Enumeration type and bit fields cannot be used with structures and unions.
® Structures and unions cannot be nested.

¢ Constant expressions cannot be used after the declaration.

114

§-12 Preprocessor

5-12

Preprocessor

C language features a preprocessor to process execution functions before they are compiled.
With the PB-2000C interpreter, you can use #include to link one file with another, and
define to assign a symbolic name to a particular string of characters.

The following is the format for #include.

#include "filename”

The PB-2000C lets you include the filename as “filename”, or < filename>>. Note also that
declaration of the following header files, required by standard C compilers, are not necessary
with the PB-2000C:

#include < stdio.h>
#incilude <math.h>
#include <ctype.h>

The following is the format for #define:

#define identifier character string consiant definition or replacement text
(replacement text cannot be omitted)

Important
» The PB-2000C does not allow macro definitions including arguments with #define as
shown below.

#define isupper(x) ((x)> ="A&&(x)<='Z") 71 : 0)

Use the appropriate functions instead.

isupper(x)
unsigned int x;
{
return(x > ="A'&&x<='2"11?1:0;
}

¢ The PB-2000C stores the following data automatically:

#define NULL {
#define EOF —1
#define FILE char
char >kstdin;

char >stdout;
char skstderr;

int errno;

However, extern declaration is required to use stdin, stdout, stderr and errno.

1156

Chapter 5 C Interpreter

5-13 Standard functions

This section contains outlines of the most commonly used standard functions. For a com-
plete list, see the function reference in Part 2 of this manual.

File input/output functions

Single-character input/output

error =putchar(c); Writes character ¢ to standard output file.
error = pute(e, fp); Writes character ¢ to file pointed to by fp.
char c¢; * When error==EQF, error or EOF.
FILE *ip;
int error;
c=getchar(); Reads single character from standard input file.
c=getc(fp); Reads single character from file pointed to by fp.
char c; ¢ Function value c is character code for entered
FILE *fp; character.

®* When ¢==EOQOF, error or EQF,

Character string input/output

r=puts(s); Writes character string s to standard output file.

r="fputs(s, fp); Writes character string s to file pointed to by fp.

int r; * When function value r= =EOQOF, error or EQOF.

char s;

FILE >fp;

p=gets(s); Reads one-line character string from standard input file.

p=Tfgets(s, ¢, fp); Reads one-line character string from file pointed to by
fp.

char s, *p; Character string is at location pointed to by pointer in
argument.

nt ¢; ¢ is number of characters.

FILE *%fp; ¢ When p==NULL NULL pointer, error or EQF.

118

5-13 Standard functions

Expression input/output

printf(s, argl,arg2,--);
fprintf(fp, s, argl,arg2,--);

sprintf(ss, s, argl,arg2,.-);

char »s; «<expression

FILE *fp;

char ss[]; «character array
to be written

Performs output of expression to standard output.
Performs output of expression to file pointed to by
fp.

Performs output of expression to character array ss.

scanf(s, argl,arg2,-);
fscanf(fp, s, argl,arg2,..-);

sscanf(ss, s, argl,arg2,---);

char 3s; +«—expression

FILE *fp;

char *kss; «character string
to be read

Performs input of expression from standard input.
Performs input of expression from file pointed to

by {p.

Performs input of expression from character string
58.

¢ When function value = = EOF, error or EOF.

Opening and closing files (S)

fp=fopen(filename, mode);
char *kfilename, > mode;
FILE *kfp;

Opens character string file.
* fp is file pointer.

error = fclose(fp};
FILE *fp;

int error;

Closes character string file.
® When error == -1, error.

n?

Chapter &8 C Interpreter

String functions

strcat(strl, str2);

char *strl, skstr2;

Appends string str2 to end of string strl.

strepy(tstr, fstr);

char *tstr, fsir;

Copies string fstr to string array tstr.

int a;

a=stremp(strl, str2);
char kstrl, kstr2;

Compares string strl with string str2. If identical,
returns 0. If different, returns other than 0.

1 =strien(str);
char skstr;
int 1;

Returns length (number of characters) of string str.

Numeric functions

y = sqrt(x) Calculates square root of x.

y = sin(x) Calculates sine of x.

Yy = cos(x) Calculates cosine of x.

y = tan{x) Calculates tangent of x.

y = atan{x) Calculates arctangent of x.

y = exp(x) Calculates exponent of x.

y = log(x) Calculates natural logarithm of x,

z = pow(x, y) Calculates x to the power of v.

angle(n) Specifies the unit of angular measurement.
n=0:DEG, |: RAD, 2: GRAD

m = abs(n) Assigns the real value of integer type value n to integer
type value m.

118

5-13 Standard functions

Memory functions

char >kmalloc{memsize);
unsigned memsize;

The malloc function makes it possible to reserve array memory area within a program. The
number of bytes specified by memsize is reserved. Once memory is reserved, the pointer
for the starting address of the memory area is returned. If memory could not be reserved,
a null pointer (zero) is returned.

char > calloc(count, size);
unsigned count, size;

The calloc function is similar to malloc in that it is used within a program to reserve memory
area for an array. The memory area reserved is determined by (size x count), where size
is the length of each element (in bytes), and count is the number of elements making up
the array (or structure). Once memory is reserved, the pointer for the starting address of
the memory area is returned. If memory could not be reserved, a null pointer (zero) is
returned.

Standard functions for display and keyboard control

beep(n); Sounds buzzer.

unsigned n; O=Ilow pitch, 1=high pitch.

clrser(); Clears display and moves cursor to upper left of
screen.

gotoxy(x, v); Moves cursor to coordinate (x, y).

int x, y;

line(x1, yt, x2, y2); Draws line from graphic coordinates (x1, yl)

int x1, yl, x2, y2; to (x2, v2).

linec(xl, y1, x2, y2); Erases line from graphic coordinates (x1, yl)

int x1, yl, x2, y2; to (x2, y2).

c=getch(); Gets single character from keyboard. Entered

int c: character shown on display.

19

Chapter 5 C Interpreter

Other standard functions

exit(); /* no argument %/

Closes file and performs normal termination of
execution,

abort();

Display ‘‘abort’’ message and performs abnormal
termination of execution.

breakpt();

Terminates execution and enters debug mode.

err=remove(fname);
char *kfname;
int err

Deletes files named fname.
Normal if err=0; Error if err= —1.

err=rename(old, new);
char old, new;
int err;

Changes ‘‘old”’ filename to ‘‘new’’ filename.
Normal if err=0; Error if err= —1.

120

Part 2

Reference

Chapter 6 Command Reference 122
Chapter 7 Standard Function Reference 126
Chapter 8 Error Message Tables 168

Chapter 8 Command Reference

hater 6 ~ Command Reference

LOAD

Format:

LOAD "filename”

Parameters:
filename - specifies the name of the file to be loaded. See Note on filenames on page 125.

Purpose:
This command is used to load a C source program from the file identified by the specified
filename. The syntax of the program is analyzed and the program is stored in the p-code
area and symbol area of the computer memory. If an error is detected during the syntax
analysis, an error message is displayed and execution is terminated.

The LOAD operation is impossible if a file with the same filename as that specified in the
LOAD command is already loaded.
The identifier of files being loaded must be ““C”.

RUN

Format:

RUN [« standard input device name] [> standard output device name]

Parameters:
standard input device name/standard output device name — standard input device/standard
output device specified by redirect file. When omitted, the standard device corresponds to
the filename type (see page 125).

Purpose:
This command executes the program stored in the p-code area as a main{) function.
Standard input devices are the computer, floppy disk, RS-232C, and RAM files. Standard
output devices are the computer, printer, floppy disk, RS-232C, and RAM files. However,
the identifier of the file must be *S’” in the case if floppy disk or RAM file.

Example:
RUN >"”PRN”
RUN <"INPUT.DAT” > "QUTPUT.DAT"

122

EDIT

NEW

Formai:

NEW

Purpose:
This command deletes the program stored in the p-code area and symbol area.

FLIST

Format:

FLIST

Purpose:
This command sequentially displays the names of the currently loaded files.
Each display of a filename is followed by a question mark for which one of the two following
commands should be entered:

(€] or x§ — display next file
(A] — terminate FLIST display

The message ‘“No file”’ is displayed if FLIST is executed and there are no files currently
loaded in memory.

EDIT

Format:
EDIT ["filename'’]

Parameters:
filename ---- specifies the name of the file to be edited (see page 125).

Purpose:
This command enters the C editor.
When a filename is specified in the EDIT command, that file is opened for editing. If the
specified file is a RAM file, it must have the identitier **C"".
When the filename is omitted, the latest loaded RAM file or a RAM file which has gener-
ated an error is opened for editing.
An unnamed file is opened for editing in the following cases when the latest {oaded file
or the file which has generated an error is not a RAM file;

123

Chapter & Command Reference

¢ Immediately after entering the editor by pressing the function key under [¢ lon the
function key menu.

s Immediately following execution of the NEW command.

¢ Immediately after operation of the NEWALL button.

¢ Immediately after changing the C area memory status after pressing the function key under
[memory] on the function key menu.

When a file is opened for editing because of an error generated following execution of the
LOAD or RUN command, the computer automatically displays the beginning of the line
in which the error was generated.

TRON

Format:

Purpose:

TRON

This command enters the TRACE mode.

In the TRACE mode, programs are executed line-by-line and the currently executed line
is shown on the display.

The trace mode is automatically cancelled when you enter the interpreter.

Display format
[filename (line number)] source line?

filename .- name of the currently loaded file or the include file name.
line number - 1~65535
source line - source program logical line (this is displayed only when the loaded or

include file is in computer memory. Not displayed when file is disk file
or when file is not in memory.)

One of the following two commands can be entered in response to the “‘?”” prompt:

(€] or Ex§ — display next line
#r) — enter break mode (see breakpt).

124

TROFF

TROFF

Format:
TROFF

Purpose:
This command cancels the trace mode.

Note on filenames

A filename is a character string enclosed within double quotation marks. If you wish to include
double quotation marks within a filename, the quotation marks that are part of the string must
be enclosed within another set of double quotation marks that define the string. When the file-
name is at the end of a command line, the closing double quotation marks may be omitted.

Filename Logical Device Name
CON Console
con Console
PRN ' Printer
prn Printer

0 : filename Disk
COMO : file parameters RS-232C
comO ; RS-232C
filename RAM file

125

Chapter 7 Standard Function Reference

 Standard Function
l Chapter r Reference

The standard functions arc those that are already defined within the C interpreter, so they
do not require definition when called.
The following is a list of the types of standard functions built into the PB-2000C’s interpreter.

* Input/output lunctions

¢ Process functions

* Memory functions

* String functions

* Numeric functions

* Other standard functions

This standard function reference explains each function in terms of format, purpose, returned
value and example.
The following is an example of the notation used for a standard function.

Return
value type Function Argument
—— T e e

int getc (stream) ;

FILE ®k stream ; /% open stream >/
— ~. -
Type of argument that Comment

should be declared

Return value type
Declares the type of value returned by the function (char, short, int, long, float, double).

Function
Actual function. Parentheses are used to enclose arguments, and semicolons are used berween
statements.

Argument
Multiple arguments are separated by commas.

Type of argument that should be declared
Declares inhe type for the arguments to be used by the funcrion. This specification is not
necessary when arguments are not used,

126

fopen

fO pe n Input/Output function

Format:

Purpose:

Returned

Example:

FILE *fopen(name, access);

char “kname; /% Character string representing filename */
char kaccess; /% Character string representing access mode *k/
This function opens the file specified by ‘“name’”.
value:

If this function is executed normally, the pointer (stream) is returned to the FILE structure.
In the case of an error, a null is returned.

/% Qutput of “file 0. dat’' contents */
main()
{
int C;

FILE *stream;
if{(stream=fopen(”“filed.dat”,”r"”))==
NULL) exit();
while{({(c=getc(stream))!=EOF)
putchar(c);
fclose(stream); /% File close %/
}

The file can be a console, printer, FDD, RS-232C or RAM file. Printer files can be opened
for output only, and an attempt to open the file for input results in an error, Disk files
and RAM files must have an ‘“S’’ identifier.

Any attempt to open a file that is already opened results in an error, regardless of the access
mode. If the access mode is changed, you must close the file and then reopen it.
RS-232C files can be opened for input/output.

Attempts to use other file types result in an error.

name
A character string that specifies the filename, consisting of a device name to which a file-
name or RS-232C set value is appended.

127

Chapter 7 Standard Function Reference

Device name

Device Name File Destination
CON Console
PRN Printer

0: FDD
COMO : RS-232C
None RAM

The device name can be either uppercase or lower-case characters. A device name made
up of mixed uppercase/lower-case characters, however, is treated as a RAM file.

Filename

Filenames are used for FDD and RAM specifications. See the PB-2000C Owner’s Manual
for details on the RS-232C set values.

name examples
1. Console
stream = fopen(“con

LA 1

LWy /% QOpens screen as stream X/

2. Printer
stream=fopen(”"PRN",”w") ; /% Opens printer as stream >/

3. FDD
stream = fopen(”0 XXXXXXXX.XXX","w") ;
/% XX ~ XX XXX =character string %/
/% Opens XX ~XX. XXX file on FDI} as stream */

4, RS-232C
stream=fopen("COMO : XX ~XX","w") ;
/¥ XX ~XX=up to 17 characters long */
/% Opens RS-232C as stream */

5. RAM
stream = fopen(" XXXXXXXX.XXX","w"} ;

7k XX ~ XX XXX =character string */
/% Opens S-characteristic RAM file as stream > /

AcCCess

Character string that specifies the access mode.

128

fapen

Text mode

i SRS ¢ LPUORTORON Opens existing file for reading.

w', Twtl Creates new text file for writing, discarding any previous contents.
“a”, "at”......... Opens file for update, appending new data at the end.

During read operations, carrier return/linefeeds (0x0D, 0X0A) or carrier returns (0x0D) are
converted to linefeed (0x0A), while (0x1A) is converted to EOF.

During write operations, linefeeds (0xQOA) are converted to carrier return/linefeed (0x0D,
0x0A).

Update mode
The following specifications can be made when the file destination is RS-232C.

N

T Tt T+t w4, “wt+, “w+t” — open for both reading and writing.

Binary mode

88 1 A “r" binary
8" "w" binary
i | P "a" binary
“rb+", “1+b"....... "r+' binary

“wb+", "w+b".....”w+" binary

In order to save memory, file pointer management is fixed. In the following example program,
the outl and out2 values are identical.

main()

{
FILE xouti,;
FILE *out2;
outi=fopen{(“test1”, K "w");
fclose(outi):
out2=fopen{(~“test2”,"w");
i f(outi==out2) printf(”"SAMENNn")
else printf{("DIFFERENTNn");
fclose(out2),

128

Chapter 7 Standard Function Reference

fclose

Input/Qutput function

Format:

int fclose(stream);
FILE *kstream;

Purpose:

This function closes an open stream.

Returned value;

/% Open stream %/

If this function is executed normally, 0 is returned to the FILE structure. In the case of

an error, EQF is returned.

Example:
main()

(

FILE ¥stream;
int status;
stream=fopen(”“file0”,”r");

)

status=fclose(stream);

if{(status==EOF)printf(“\nError!\n");

getchar

Input/Qutput function

Format:
int getchar();

Purpose:

This function reads one character from standard input stdin, and is identical to getc(stdin).
The character input is not returned until the [key is pressed. Entry of code Ox1A () + (W)

is regarded as EOF.
Returned value:

This function returns the character which is read. EOF indicates an error or file end,

determined using feof or ferror.

Example:
int c .

¢c = getchar();

130

fgetc

getc Input/Output function

Format:
int getc(stream);
FILE kstream; /% Open stream >/

Purpose:
This function reads one character from the current position of the input stream. The stream
file pointer then advances to indicate the next sequential character.
For console input, the input character is not returned until the [xg key is pressed. For console
or RS-232C input, entry of code 0x1A is regarded as EOF.

Returned value:
This function returns the character which is read. EOF indicates an error or file end,
determined using feof or ferror.

Example:
The following program converts the contents of the file test.dat from uppercase to lower-
case characters,

main{}

{
FILE *stream;
int c; .
stream=fopen(“test.dat”,"r"),;
while({c=getc(stream))!=EOF)

putchar{('A'<=¢c && ¢c<="Z')?2¢c+0x20:¢);

fclose(stream);

fgetc Input/Qutput function

Format:
int fgetc(stream); /% Open stream %/

P Y

nIT N L .
| Ay ¥) & ™ SLltcalll,

Purpose:
This function reads one character from the current position of the input stream. The stream
file pointer then advances to indicate the next sequential character.
For console input, the input character is not returned until the [Exg key is pressed. For con-
sole or RS-232C input, entry of code Ox1A is regarded as EOF.

131

Chapter 7 Standard Function Reference

Returned value:

This function returns the character which is read. EOF indicates an error or file end, deter-
mined using feof or ferror.

Example;
FILE *stream;
int c;

¢ = fgetc(stream);

putCh ar Input/Output function

Format:
int putchar(c);
int ¢ /% Write string %/
Purpose:

This function writes one character to standard output stdout, and is identical to putc(c,
stdout).

Returned value:
This function returns the value which is written. EOF indicates an error, but EOF is also
a proper integer, so ferror is used to detect error conditions.

Example:
The following program outputs a 1-line entry.

main()
{
char buffer[64];
int i,C;
gets(buffer);
for (i=0;, buffer[i]l!="0"; i++) f{
¢ = putchar(buffer[i]);
if {(c==EOF)break;

132

putc

putc

Input/Qutput function

Format:
int

Purpose:

putc(c, stream);

C /% Write string %/

FILE >kstream; /% Open stream %/

This function writes one character to the current position of the output stream. The stream
file pointer then advances to indicate the next sequential character.

Returned value:

This function returns the value which is written. EOF indicates an error, but EOF is also
a proper integer, so ferror is used to detect error conditions.

Example:

The following program outputs a l-line entry to “‘file 0",

main()

{

FILE xstream;

char buffer[64],;

int i,C;

stream=fopen(”"file0”,"a");

gets(buffer);

for(i=0; buffer[i]!="~0"]i++) {
¢ = putc(buffer[i], stream},;
if(c==EOF)break;

J

fclose(stream);

133

Chapter 7 Standard Function Reference

fp Utc Input/Output function

Format:
int fputc(c, stream);
int «¢; /% Write string %/
FILE *kstream; /% Open stream */
Purpose:

This function writes one character to the current position of the output stream. The stream
file pointer then advances to indicate the next sequential character.
Returned value:
This function returns the value which is written. EQF indicates an error, but EOF is also
a proper integer, so ferror is used to detect error conditions.
Example:
FILE *stream;
char buffer[32];
int c¢;

¢ = fputc(buffer[0],stream):

gets Input/Output function

Format:
char >k gets(string);
char siring; /% Data storage pointer %/

Purpose:
This function reads one line from standard input stdin and stores it in ‘‘string””.
Characters are read up to carrier return/linefeed encountered.
The carrier return/linefeed character is replaced with a null before being stored in the string.

Returned value:
This function changes the data storage pointer. Return of a null indicates an error or EQF,
determined using feof or ferror.

Example:
nhar ot rinnlan?t Y raocol t -
Wil Otllllaluu}, [e L |
result = gets{(string),;

134

puts

Egets Input/QOutput function

Format:
char >k fgets(string, count, stream);
char *kstring; /% Data storage pointer >/
int count; /% Number of characters read %/
FILE kstream; /% QOpen stream %/
Purpose:

This function reads a character string from the input stream and stores it in “string’’, Charac-
ters are read from the current location of the stream up to the first carrier return/linefeed
character encountered, the end of the file, or until the number of characters read equals
“count”” — 1. A null character is appended to the end of the character string that is returned.
Carrier return/linefeed characters are also read into the returned string.

Returned value:

This function returns the data storage pointer. Return of a null indicates an error or EOF,
determined using feof or ferror.

Example:
FILE Xstream;
char string[30], *result;

result = fgets (string,30,stream);

puts Input/Output function

Format:
int puts(string);
char > string; /% Write data pointer */
Purpose:
This function writes a string to standard output stdout. The null character indicating the.
end of the character string is written as a carrier return/linefeed character.
Returned value:
If this function is executed normally, a linefeed character is returned. In the case of an error,
EQF is returned.
Example:
int result;

result = puts (”string”):

135

Chapter 7 Standard Function Reference

-f__puts Input/Qutput function

Format:
int fputs(string, stream);
char kstring; /% Write data pointer */
FILE kstream; /% Open stream */
Purpose:

This function writes a string starting from the current position of the output stream. The
null character indicating the end of the string is not written.

Returned value:
This function returns the last written character. If the string is blank, 0 is returned. and
EOF is returned when an error occurs.

Example:
FILE kstream;
int result;

result = fputs(”"string”,stream),;

fread Input/Qutput function

Format:
int fread(buffer, size, number, stream);
char *buffer; /% Data storage pointer */
int size; /% Number of data bytes */
int number; /% Number of data items */
FILE *kstream; /% Open stream ¥/
Purpose:

This function reads from the data stream the number data items specified by ‘‘number”’,
each data item being of the length specified by ‘‘size’’, and stores the items in the buffer.
The stream file pointer advances the actual number of bytes read.

Returned value:
This function returns the number of data items read. A number is less than the value speci-
fied by ““number’’ indicates an error or that EQF was reached.

136

fwrite

Example:

FILE xstream;
long buffer[30];
int count ;

Stream:fopen(”fi'eor;’nr");
count=fread((char x)buffer,sizeof(long),
30,stream},

fwrite Input/Output function

Format;

Purpose:

int fwrite(buffer, size, number, stream);

char kbuffer; /% Write data pointer >/

int size; /% Number of data bytes %/
int number; /% Number of data items */
FILE “stream; /% Open stream %/

This function writes from the buffer to the output stream, the number data items specified
by ‘“‘number”’, each data item being of the length specified by ‘size’’.
The stream file pointer advances the actual number of bytes written.

Returned value:

Example:

This function returns the number of data items written. A number is less than the value
specified by ‘“‘number’’ indicates an error,

FILE *stream;
long buffer[30];
int count

stream=fopen(”"file0”,6"w");
count=fwrite{(char *)buffer,4,30,stream);

137

Chapter 7 Standard Function Reference

printf, fprintf, sprintf [aput/Output funetion

Format:

Purpose:

Returned

int printf(format [.argument---]});
int fprintf(stream, format [,argument--]);
int sprintf(buffer, format [,argument--]);

char s format; /% Qutput conversion specification */
FILE kstream; /% Open stream * /

char buffer; /% Quiput buffer */

argument /% Argument X/

This function converts the “‘argument’”’ in accordance with the ““format’’ specification, and
outputs it to stdout in the case of printf, to the file specified by the stream in the case of
fprintf, or to the buffer in the case of sprintf. In the case of sprintf, the null character
at the end of the character string is also output.

“format’’ is a character string greater than 0, and can consist of normal characters, escape
sequences, and conversion specifications. Normal characters and escape sequences are output
in the sequence that they appear, while conversion specifications are executed by sequentially
extracting the arguments, performing the conversion and then outputting the data. When
there are more arguments than conversion specifications, the extra arguments are simply
disregarded. In the case that there are fewer arguments, results are uncertain.

value:

This function returns the number of output characters. Note that the null at the end of

the character string is not included in the count in the case of sprintf. EOF is returned
when an error occurs,

Example 1 — printf output

int count = 234;
printf{”%d %06d %X %x %o~n”,count,count,count,
count,count);

Qutput result
234 000234 EA ea 352

Example 2 — printf output
int count = 234;
£ (

print "1 %d %6d: %-6d. ~n”,count,count,count);

Output result
234 234,234 l

138

printf, fprint, sprintf

The conversion specification is a character string that begins with the character “‘%’’.
However, when the character string foliowing ‘‘%’" does not have the meaning of a conver-
sion specification, that character string (up to the next ‘“%’’} is output as it is. For exam-
ple, ‘%’ is output in the case of “%%’’.

% [flag] [field width] [. precision] [I] conversion characters

flag
Include the flag to cause the conversion result to be entered into the field flush left. The
defauit option is flush right.

field width

The minimum field width is specified by an unsigned decimal integer. When the conversion
resuit is smaller than the specified field width, the value is displayed flush left in the field.
If ‘=" is specified for the flag, the value is flush right.

Leading or following columns in the field are filled with spaces, unless the first digit of
the field width specification value is 0. In that case, leading and following columns are
filled with zeros.

When the conversion result is longer the field width, or when a field width is not specified,
the conversion result is output as it is.

Precision

Precision is specified by an unsigned decimal integer following the field width. The field
width and precision specifications are separated by a period. If only a period is included
without a decimal value, a precision of 0 is assumed.

The following shows the meaning for each precision specification, in accordance with the
conversion character.

d o u x, X...... Specifies the least number of digits output. If the number of digits in
the argument are less than the precision, leading (s are added to fili empty
digits to the left of the output value.

Default: 1

T S R Specifies the number of digits output following the decimal points. No

decimal places are output for precision 0.
Default: 6

2, G Specifies the maximum number of significant digits output.
Default: all significant digits

S ieiirrianirarienraans Specifies the maximum number of characters output.

139

Chapter 7 Standard Function Reference

This value has one of the following meanings in accordance with the conversion characters.

Specifies long argument.
Disregarded.

Conversion Characters

int; signed decimal notation.

int; unsigned octal notation.

int; unsigned decimal notation,

int; unsigned hexadecimal notation.

Variable for “*x’* is abcdef, and variable for **X'* is ABCDEF
double; decimal notation in the form [—]ddd.ddd, in which ddd is a 1-digit
or longer decimal value. The value is rounded off to the number of
decimal places specified by the precision.

double; decimal notation in the form [-]d.ddde+dd for e and
[-]d.dddE #dd for E, in which d is a 1-digit decimal value, ddd is one
or more digits, and dd is two digits. The value is rounded off to the num-
ber of decimal places specified by the precision.

double; converts f or e (E in the case of G), and the number of signifi-
cant digits is determined by the precision specification. e (or E) is used
if the exponent of the value is less than —4, or greater than or equal
to the precision. Trailing zeros are cut off the result, and a decimal is
included only when a fractional part is present.

int; converted to unsigned char.

char 3 : characters from the string are output until the null at the end
of the character is reached (null not included in output) or until the
number of characters specified by the precision have been output.

140

scanf, fscanf, sscanf

Scanf, fscanf, Sscanf Input/Output function

Format:

Purpose:

int scanf(format [,argument---});
int fscanf(stream, format [,argument-.-]);
int sscanf(buffer, format [,argument-.]);

char *format; /% Input conversion specification >/
FILE >kstream; /% Open stream >/

char ¥ buffer; /% Input buffer %/

argument /% Argument %k /

The function converts input data in accordance with the **format’’ specification, and assigns
it to “‘argument”’. Input is performed from stdin in the case of scanf, from the file speci-
fied by the stream in the case of fscanf, or from the buffer in the case of sscanf.

‘‘argument’’ is a pointer that points to the variable type that corresponds to the *‘format”’
specification. In the case of sscanf, a null character is used as the end of the buffer, which
is equivalent to the end-of-file of scanf and fscanf.

“format’’ is a character string greater than **0”’, made up of spaces, normal characters
or conversion specifications. When conversion specifications are present, converted values
are sequentially assigned to the following arguments. When there are more values than con-
version specifications, the excess arguments are disregarded. In the case that there are fewer
argurnents, results are uncertain.

Returned value:

This function returns the number of arguments that have been assigned values. EOF is
returned when the end-of-file is reached, regardless of the conversions performed up to
that point.

Example of input using scanf

int i;
float f;
double d;

scanf ("%d%f%| f"” K &i, &%, 6 &d);

If “123—1.23el0 203" is entered, i=123, f= —1.23¢l10, and d=203.0.

141

Chapter 7 Standard Function Reference

format

L. Space characters (spaces/carrier returns)

Input is read until a character that is not a space (this character is not read) is encountered
or until there are no more characters. Execution of the function is terminated if a character
that is not a space is encountered.

2. Normal characters (other than spaces and %)
The next character is read, and execution of the function is terminated if it is not a normal
characters, and the input character is not read.

3. Conversion specifications
Conversion specifications are executed according to the following sequence.

* Any spaces entered are skipped, except in the case of conversion character c.

* The input field is read. The input field is defined as being up to the first space, the first
characters which cannot be converted by the conversion specification, or by the specified
field width. The characters following the input field are considered to be vet unread. Exe-
cution of the function is terminated if the length of the input field is 0.

* The input field is converted to the type determined by the conversion character.

¢ Unless assignment is disabled by an asterisk, conversion results are assigned to arguments
following ‘‘format’” not yet assigned conversion results.

The conversion specification is a character string beginning with ““%?’, in the format shown
below. However, when the character string following ““%’’ does not have the meaning of
a conversion specification, that character string (up to the next ‘“%°’") is input as it is. For
example, ““%’’ is input in the case of “‘% %"

% [*] [field width] [1] conversion characters

* (assignment disabled)

The input field can be read to, but assignment of the conversion result to an argument can-
not be performed.

field width
The maximum field width is specified by an unsigned decimal integer.

1
This value has one of the following meanings in accordance with the conversion characters.

d, 0, Xevvevnrnannnn. Specifies a long argument.
e f gL, Specifies a double argument.
Other............... Disregarded.

142

ungetc

Conversion characters

ungelc

Decimal integer (can also be unsigned). The corresponding argument
points to integer.

Octal integer (can also be unsigned). The corresponding argument points
to integer.

Unsigned decimal integer. The corresponding argument points to integer.
Hexadecimal integer (can also be unsigned). The corresponding argument
points to integer.

Floating-point number (sign is optional}. The corresponding argument
points to float. Results are uncertain when the input for the character
string making up the exponent is greater than two digits.

String of non-white characters. The corresponding argument points to
a character array capable large enough to hold the sequence, including
the null character at the end. A null is automatically added to the end
of the string.

String of characters made up of the number of characters specified by
the field width. A size of 1 is assumed when there is no field width specifi-
cation. The corresponding argument points to a character array capable
large enough to hold the sequence. Spaces are not skipped, they are read
into the string.

Input/Output function

Format:
int ungete{c, stream);
int ¢ /% Return character */
FILE kstream, /% Open stream %/
Purpose:

This function returns one character to the open stream.
Refore the character is returned, at least one character must be read from the stream. An
EOF as the character is disregarded. The number of characters that can be returned is equal

to the number of

characters read from the string. However, updating of the buffer makes

the number of characters read 0.

Returned value:

This function returns character ¢. A return value of EOF generates an error.

143

Chapter 7 Standerd Function Reference

Example:
FILE *stream;
int c,;

c getc(stream);

O
H

ungetc{(c,stream),

ffluSh Input/Output function

Format:
int fflush(stream);
FILE *kstream; /% Open stream */

Purpose:
This function writes the buffer contents to the file when an output stream is specified. When
an input stream is specified, the buffer contents are cleared. This function does not close
the stream.

The buffer is automatically flushed when the buffer becomes full, when the stream is closed,
or after normal program execution is attained without closing the stream.

Returned value: .
If this function is executed normally, O is returned. In the case of an error, EOF is returned.
Example:
FILE *stream;
int c,status;

¢ = putc{c,stream);
status = fflush(stream);

144

ferror

feOf Input/OQutput function

Format:
int feof(stream);
FILE *stream; /% Open stream */

Purpose:
This function checks whether or not the stream has reached EOFE.

Returned value:
This function returns a value other than O when EOF has been reached. When EOF has
not vet been reached, a 0 is returned.

Example:
FILE *stream;
int status;

status = feof(stream);

fe l'l'O l' Input/Qutput function

Format:
int ferror(stream);
FILE > stream; " /% Open siream %/

Purpose:
This function checks for a stream error condition.

Returned value:
This function returns a value other than 0 when a stream error condition is detected. When
an error condition is not detected, a 0 is returned.

Example:
FILE *stream;
int err ;
err = ferror(stream);

145

Chapter 7 Standard Function Reference

(:learerr Input/Qutput function

Format:
void clearerr(stream);
FILE kstream; /% QOpen stream %/
Purpose:
This function clears a stream EOF and an error condition.
Example:

FILE *stream;
clearerr(stream);

remove Input/Output function

Format:
int remove(name);
char kname; /% Character string representing filename */
Purpose:
This function deletes the file specified by the filename, and can be used for FDD and RAM
files. An error occurs if an attempt is made to delete an FDD file while any other FDD
file is open.
Returned value:

If this function is executed normally, 0 is returned. In the case of an error, —1 is returned.
The following shows the errno values and their meanings.

pARMS Specified file cannot be found.

J3eeeverees Specified file is open, File specified is other than FED file or RAM file. Attempt
made to delete FDD file while an FDD file is open.

Example:
int status;
status = remove("file0");

148

rename

re name Input/Output function

Format:

Purpose:

Returned

Example:

int rename(oldname, newname);
char > oldname; /% Character string representing old filename &/
char *newname; /% Character string representing new filename %/

This function changes the oldname filename with the newname, and can be used with FDD
and RAM files. Note that the oldname and newname must be for the same device. An error
occurs if an attempt is made to change the name of an FDD file while any other FDD
file is open.

value:
If this function is executed normally, 0 is returned. In the case of an error, a value other
than O is returned. The following shows the errno values and their meanings.

2 file specified by oldname cannot be found.

| file specified by oldname is open. File specified is other than FDD file or
RAM file. Attempt made to change the name of FDD file while an FDD file
is open.

17 i, filename specified by newname already exists.

18. i, oldname device different from newname device.

int status;
status = rename(”"filed”,"filel1”);

Input/Output Function Errors

When an error is generated by an input/output function call, variable errno is assigned
a value which identifies the error.

The following table shows the meaning of each error. It does not include errors that can
be generated for specific functions.

See the information on each function for information on function-specific errors. Note
that the error value assigned to errno changes when the next function is called, so you should
check the value of errno immediately after generation of an error to find out the specific
reason.

147

Chapter 7 Standard Function Reference

Value Meaning
2 L. Improper filename specification.
2. Specified file cannot be found.
5 1. Error in 170 device operation.
2. Problem with drive device,
9 1. Incorrect siream pointer.
2. Open file not referenced.
3. Attempt to write to file or device opened for reading.
4, Attempt to read from file or device opened for writing.
12 Overflow in work area (I/0 buffer) or file area (RAM file).
13 1. Arttempt to open file that is already opened.
2. Attempt to open file with other than S identifier.
3. Attempt made to open other than RS-232C file for both read and write.
4, Attempt to open printer for reading.
19 1/0 impossible.
24 Too many open files.
28 No more area on disk available for writing.
35 Attempt made to write to disk file which is write protected.
36 Disgk needs formatting.
37 1. Overflow of R8-232C input buffer.

2. Framing error detected at RS-232C port:
3. Parity error or overflow error detected at RS-232C port.

148

abort

eXit Process function

Format:
void exit();

Purpose:
This function causes a normal termination of a program by flushing all stream buffers,

and closing all open files before termination.
Example:
main()

|
FILE xstream;

if((stream=fopen{”"data”, “r”))==NULL){
printf{(”“couldn’t open data filexn");

exit();

ab O rt , Process function

Format:
void abort();

Purpose:
This function displays the message *‘abort’’ for the standard error output stderr, and causes
abnormal program termination. The abort function does not fiush the stream buffer,

Example:
main{)

(
FILE *stream;

if((stream=fopen(”data”, “r”))==NULL) |
printf(“couldn’t open data filexn");

abort(};

149

Chapter 7 Standard Function Reference

breakpt

Process function

Format:

void breakpt();
Purpose:

This function terminates program execution and enters the BREAK mode.
Example:

breakpt(});

About the BREAK mode

The compufer enters the BREAK mode when the g™ key is pressed in the TRACE mode,
or when the breakpt function is executed. When the computer enters the BREAK mode,
the prompt ““Break ?’’ appears on the display.

At this time, one of the following commands can be entered in reply.

Command Meaning
A or Interrupt execution.
C or [Resume execution,
T Enter TRACE mode and resume execution.
N Cance!l TRACE mode and resume execution.
D Display values assigned to variables (if BREAK mode was entered following
RUN execution).
Operation Display
Break 7 __
d >
fxg >a
int 12
>
Break ? __

150

malioc

mallOC Memory function

FYormat:

Purpose:

Returned

Example:

char >k malloc(size);
unsigned size; /% Number of bytes reserved %/

This function reserves a memory area of size “‘size’”.
The reserved memory area is cancelled when execution of the program is terminated.

value:

This function returns the pointer of the reserved memory area. A null is returned if reser-
vation of memory is unsuccessful.

main{)

{

double *array,

if{(array={(doublex)malloc(256%sizeof
(double))==NULL) {
printf(”"Could not reservexn”);
exit();

}

Important

malloc and calloc store data in the reserved memory area into the symbol area. Therefore
the symbol area, free area must be at least 8 bytes. If the symbol area is smaller, execute
the following allocchk command before malloc and calloc.

alfocchk() /% Symbol area check %/
[

int *bgn_p, *end_p;

bgn_p=0x167E; end_p=0x0A8C;

if(xend_p— *bgn_p<8) abort();
}

Example;

allocchk();
mem=malloc(size);

.

151

Chapter 7 Standard Function Reference

Callo C Memory function

Format:
char sk calloc(n,size);
unsigned n; /% Number of elements %/
unsigned size; /% Number of bytes per element */
Purpose:

This function reserves an array of “‘n’* number of elements, each element being of “‘size’’ size.
Specifying 0 in this function results in initialization. The reserved memory area is cancelled
when execution of the program is terminated.

See malloc.

Returned value:

This function returns the pointer of the reserved memory area. A null is returned if reser-
vation of memory is unsuccessful.

Example:
main()
{
int xiarry;

if((iarry=(intkx)calloc(1000,2))==NULL)(
printf(“couldn’t use IARRYn"};
exit();

i .

for(i=0; i<1000; i++) iarry[i]=0;

152

strien

fl'ee Memory function

Format:
int free(ptr);
char kpir; /% Pointer of freed memory area */

Purpose:
This function frees memory area. Argument ptr must be the pointer of the memory area
reserved by calloc or mailoc.
Memory area which is first reserved by calloc or malloc cannot be freed.

Returned value:
This funiction returns 0 when the memory is freed. A—11s returned if argument ptr is not
the pointer of the memory area reserved by calloc or malloc.

Example:
char xarry;

arry = malloc(258);

free(arry),;

Strlen String function

Format:
int strlen(string);
char string; /% Character string %/

Purpose:
This function returns the number of bytes in ‘‘string”’, up to the null at the end.

Returned value:
This function returns the length of ‘‘string’’, not including the null at the end. No value
is returned when an errof occurs. '

Example:
int length;

length=strien(”abc”); /% length=3 %/

183

Chapter 7 Standard Function Reference

Stl'(:l)y String function

Format:
char strcpy(dest, source);
char >dest, *ksource; /* Character string */

Purpose:
This function copies from the beginning of ‘‘source’” up to the nuil at the end (including
the null) to the point starting from *‘dest’’. Overflow check is not performed for the copy
operation.

Returned value:
This function returns the ‘‘dest’’ pointer.

Example:
char *result,string|[64];

result = strcpy(string,“abe”);
/% string="abc¢c” %/

Strcat String function

Format:
char sk strcat{dest,source);
char kdest, ¥ksource; /% Character string 3/

Purpose:
This function appends from the beginning of “‘source’” up to the null at the end (excluding
the null) to the point starting from the first null in “*dest’’, and inserts a null at the newly
created string. Overflow check is not performed for the copy operation.

Returned value:
This function returns the ‘‘dest’’ pointer.

154

stremp

Example:
/* Copies file XXXX. XXX to XXXX.bak */

maini()

{
char filename[32],backup[32],%s,c¢c;
FILE xfp1,xfp2;1
scanf (“%s”,filename) ;
strcpy(backup,filename);
s = backup;
while(xs!=""0"&&%s!=".")8++;
xs="\0",
strcat(backup, " .bak"};

/* Append character strings */
if((fp1=fopen(fiIename,"r"))::NULL)exit();
fp2=fopen{backup,”"w"};
while((c=getc(fpt1))!=EOF)putc(c,fp2};
fclose(fp2);fciose(fpl).:

Stl'cmp String function

Format:
int stremp(stringl, string2);
char *kstringl, *string2; - /% Character strings to be compared */

Purpose:
This function performs a character-by-character comparison (of ASCII codes) of *“‘stringl™
and “‘string2’’ from the beginning of the strings up to the null. The null is also used in
the comparison.

Returned value:
This function returns one of the following integer values.
stringl < string2-+value less than 0
stringl =string2—0
stringl > string2 — greater than 0

Example:
int result,;
char string 1[6]="abcde”;
char string 2[6]="abcba”;
main()

result=strcmp(stringl,string2},;
/% result=1 %/

165

Chapter 7 Standard Function Reference

strchr

String function

Format:
char >kstrchr(string, chr);
char string; /% Character string * /
int chr; /% Characters to be searched for */
Purpose:

This function searches the characters of ‘“‘string”’ to see if it contains an occurrences of
“chr*’, This function can also be used to search for nulls.

Returned value:

This function returns the pointer of of *‘chr’’. A null is returned if no occurrences of *‘chr’’
are found in “‘string””.

Example:

The following program searches an input character string for any empty spaces and changes
them to *“_".

main()
{
char instr[64], %ss;

printf(“Ilnput string ? "};

gets(instr};

ss = instr;

while((ss=strchr(ss,’” "))!=NULL)
ss = ‘_';

_ ¥

puts(instr);

156

abs

ab S Numeric function

Format:
int abs(n);
int n; /% Integer *k/

Purpose:
This function returns the absolute value of an integer.

Returned value:
This function returns the absolute value of integer “*n’’.

Example:
y = abs(x); /% Y=4 %/
The following declaration would be used to return the absolute value of a floating point value.

extern double fabs();

double fabs(x)
double x;
{ return(x>0.0)?x:-x; }

The C language of the PB-2000C cannot use macros with arguments, so the following
define statement cannot be used, though it may be available on other computers.

#define fabs(x) (({(x)>0) ?2(x):-(x))

167

Chapter 7 Standard Function Reference

Siﬂ, COS’ tan Numeric function

Format:
double sin(x);
double cos(x);
double tan(x);
double x; /% Unit of angular measurement (DEG, RAD, GRAD) * /

Purpose:
Each of these functions returns a value equivalent to its corresponding trigonometric func-
tion. The value 33 is assigned to errno when the calcuiation range of angle unit x is exceeded.
The following shows the allowable calculation range for angle unit x.

Ix| <1440 (DEG)
Ix| <8% (RAD)
Ix| <1600 (GRAD)

Returned value:
Each of these functions returns a value equivalent to its corresponding trigonometric func-
tion. When an error occurs, 0 is returned,

Example:
The following program is used to input an angle and then produces its corresponding sin,
cosine and tangent values.

main()
{
double Y
angle(0);
for(;:)I
printf{(“Angle ?7");
scanf ("% 1", 6 &y);
printf(“%11.10g %11.10g %11.10g ~n",
sin{(y),cos(y).,tan(y});

i

Execution example

Input Display
RUN &g Angle 7_
30 [exg 0.5 0.8660254038 0.57735
02692
Angle 7_

168

asin, acos, atan

asin, acos, atan

Numeric function

Format:
double asin(x);
double acos(x);
double atan(x);
double x:

Purpose:

Each of these functions returns a value equivalent to its corresponding inverse trigonomet-
ric function. The value 33 is assigned to errno when the calculation range of x is exceeded.
The following shows the allowable calculation range for x.

<Calculation range of x>
—1=x=1 (for asin, acos)
Ix| < 100" (for atan)

< Range of returned value> (for RAD)

{—7/2, 7/2} (for asin)
[0 , =1 (for acos)
[-%/2, #/2] (for atan)

Returned value:

Each of these functions returns a value equivalent to its corresponding inverse trigonomet-
ric function. When an error occurs, 0 is returned.

Example:
double Y,
angle(1); /%
y = asin{(1.0); /%
y = acos{(1.0); /*®
y = atan{(1.0); /%

p— e

RAD
y=1
y=0
¥

0.

specification %/

.5707963268 x/

* /
7853981634 %/

169

Chapter 7 Standard Function Reference

Sinh, COSh’ tanh Numeric function

Format:
double sinh(x);
double cosh(x);
double tanh(x};
double x;
Purpose:

Each of these functions returns a value equivalent to its corresponding hyperbolic function.

sinhx=(e*—e"%)/2
coshx=(e*+e%)/2
tanhx=(e*"~e™)/(e"+e7™)

The value 33 is assigned to errno when the calculation range of x is exceeded. The follow-
ing shows the allowable calculation range for x.

Ix1=230.2585092 (for sinh, cosh)
Ix| <10'%, — 1< Itan(x)| <1 (for tanh)

Returned value:

Each of these functions returns a value equivalent to its corresponding hyperbolic func-
tion. When an error occurs, O is returned.

Example:
double vy;
Yy = sinh(1.0); /% y=1.1752011936 */
y cosh(1.0); /% y=1.5430806348 %/
y = tanh(1.0); /¥ y=0.761594156 %/

.4}.

160

asinh, acosh, atanh

aSinh, aCOSh, atanh Numeric function ‘

Format:
double asinh(x);
double acosh(x);
double atanh(x);
double x;

Purpose:

Each of these functions returns a value equivalent to its corresponding inverse hyperbolic
function.

sinh~'x=loge (x +Vx2+1)
cos " 'x=loge (x+Vx2—1}
tanh 'x=1/2 loge 1 +x/1—x

The value 33 is assigned to errno when the caiculation range of x is exceeded. The follow-
ing shows the allowable calculation range for x.

x| <SE+99 (for asinh)
1=x<SE+99 (for acosh)
-I<x<«1 (for atanh)

Returned value:

Each of these functions returns a value equivalent to its corresponding inverse hyperbolic
function. When an error occurs, 0 is returned.

Example:
double Y.
y = asinh(1.0); /% y=0.881373587 %/
y = acosh(2.0}); /% y=1.316957897 %/
y = atanh(0.5); /% y=0.5493061443 */

161

Chapter 7 Standard Function Reference

p Ow Numeric function

Format:
double pow(x, y);
double x,y;

Purpose:
This function raises x to the power of y. When y=0, 1 is returned. When x=0 and y is
negative, when x is a negative value and y is not an integer, or when an overflow occurs
in the result, the 33 is assigned to errno.

Returned value:
This function returns the result of raising x to the power of y. When an error occurs, 0
is returned.

Example:
double x=2.0,y=3.0,z;

Z = pow(x,y): /% z=8.0 x/

Sqrt Numeric function

Format:
double sqrt(x);
double x;

Purpose:
This function returns the square root of x. When x is a negative value, 33 is assigned to
errno. The following shows the allowable calculation range for x.

0=<x<10'%

Returned value:
This function returns the square root of x. When an error occurs, 0 is returned.

Example
double Y.

y = sqrt(2.0); /% y=1.4142135624 %/

'

182

log, log10

exp Numeric function

Format:
double exp(x);
double x;

Purpose:
This function returns the exponent function of x (¢*). If x is outside of the range of
X=230.2585092, 33 is assigned to errno.

Returned value:
This function returns the exponent function of x (¢*). When an error occurs, 0 is returned.

Example:
double Y

y = exp(1.0); /% y=2.7182818285 %/

log, log10 Numeric fusction

Format:
double log(x);
double loglO(x);
double x;

Purpose:
The log function returns the natural logarithm of x (logex), while logl0 returns the common
logarithm of x (logw x). If x=0, 33 is assigned to errno.

Returned value:
The log function returns the natural logarithm of x, while logl0 returns the common
logarithm of x. When an error occurs, 0 is returned.

Example:
double vy;
y = log (1000.0); /% y=6.907755279 %/
v - lannadNfFd0nnn N /ol v _ N &L/
y = Ty v vV Y .. vy, Pl Y= w ™~/

163

Chapter 7 Standard Funciion Reference

angle Numeric function

Format:
void angle(n);
unsigned n; /% Angle mode %/
Purpose:
This function specifies the angle mode for trigonometric and inverse trigonometric functions.
0 : DEG (degrees)
1 : RAD (radians)
2 : GRAD (grads)
When the specification for n is not 0, 1, or 2, a value of 33 is assigned to errno.
Example:
doubie Y
angle{(0); /¥ DEG specification %/
Yy = sin{(80.0); /¥ y=1.0 %/
angle(1) /¥ RAD specification %/
y = s8in(1.570796327) ; /¥ y=1.0 %/

beep

Format:
void beep(n);
unsigned n; /% Buzzer mode */
Purpose:
This function is used to control the volume of the buzzer sound as follows:
0 : low volume beep
1 : high volume beep
When the specification for n is not 0 or 1, a value of 33 is assigned to errno.
Example:

beep(0); /% Specifies low volume beep */

184

gotoxy

clrser

Format:
void clrser();

Purpose:
This function clears the display and moves the cursor to the home position (upper left corner),

Example:
clrscr();

Execution result
The screen is cleared and the cursor is moved to the home position.

gotoxy

Format:
void gotoxy(x, ¥);
int x; /% x-coordinate */
int y; /% y-coordinate X/
Purpose:

This function moves the cursor to the position on the virtual screen (32 columns x 8 lines)
specified by x and y. The origin of the virtual screen is the upper left corner (0, 0), and
the ranges for the x and y coordinates are as follows:

O0=x=13l
O=y=7

Specifying a coordinate outside of this range results in 33 being assigned {o errno.

Example:
gotoxy(10,2);
/% Specifies cursor location (10,2) %/

185

Chapter 7 Standard Function Reference

getch

Format:
int getch(};
Purpose:
This function returns the character code of a single character entered from the keyboard.

This function cannot be used for input of [, &g, (W), @, g, £S, function keys or
followed by a one-key command.

When the key buffer is empty, the computer stands by for further input. The cursor is shown
on the display, but characters are not displayed as they are input,
Returned value:
This function returns the character code equivalent to a single character entered from the
keyboard.
Example:
int X ;

X = getch{),;

166

A

fine, linec

line, linec

Format:
void line(xl, x2, v1, y2);
void linec(xl, y1, x2, y2);

int x1; /% Stari coordinate *k/
int yi; /% Start coordinate *k/
int x2; /*¥ End coordinate */
int y2; /% End coordinate %/

Purpose:
The line function draws a straight line from a start point (x1,y1) to an end point (x2,y2),
specified using the coordinates on the virtual screen (192 x 64 dots). The origin of the virtual
screen is the upper left corner (0, 0), and the ranges for the x and y coordinates are as follows:

0=x1=19
0=yl =63
0=x2=191
0=y2=<63

Specifying a coordinate outside of this range results in 33 being assigned to errno.
The linec function operates the same as the line function, except that it erases lines between
the specified coordinates.

Example:
For a detailed example of this function, see Chapter 4 in Part 1 of this manual.

line(10,10,50,50);

/% Draws straight line from start
coordinate(10,10) to end coordinate
(50,50)%/

linec(10,10,50,50);
/% Erases straight line from start
coordinate(10,10) to end coordinate
(50,50} %/

187

Chapter 8 Error Message Tables

Cllapter 8 Error Message Tables

1., Command Error Messages

Error Message

Meaning

Action

Illegal command

Illegal format in command.

Recheck command format.

Buffer overflow

Logical command line exceeds 255
characters.

Keep logical command lines 255

characters or less.

No file

Attempt to LOAD a file that does not
exist (displayed upon execution of FLIST
command only).

LOAD a file before executing

FLIST.

2, Syntax Analysis Error Messages

Error Message

Meaning

Action

Syntax error

Number of elements in array outside of
specified number, or attempt to
use & value not defined by #define

Check syntax.

Unknown character

Atlempt to use illegal character as
identifier, etc.

Check character.

Illegal char constant

Character constant not single character
which can be displayed, or not escape
sequence. Character constant not included
within single quotation marks.

Check character string.

Illegal string

Character string not characters which can
be displayed, or not escape sequence.
Character string not included within dou-
ble quotation marks.

String exceeds 255 characters.

Check character string.

[llegal escape sequence

Characters following ~ do not form a

valid escape zeauence,

Check escape sequence.
Valid escape sequences are:
e e ddd- s oxdd-
Na(07hy: ~Bb(08h) f(OCh)-
“n{0Ah)* ~r(0Dh)* ~ t{09)

168

Syntax Analysis Error Messages

Error Message

Meaning

Action

Arithmetic overflow

Floating point constant outside of
expressible range.

Check floating point constant.

Illegal preprocessor

Preprocessor syntax error.

Check preprocessor,

Too many include

Nested # include’s exceed 10 levels,

Keep nesting 10 levels or less,

Illegal storage class

Specified storage class cannot be used.

Check storage class or check
position of specification.

Illegal type

Attempt to use illegal type specifier. Void
type is specified as type specifier by data
definition.

Check type specifier.

1llegal struct/union

Struct or union nesting cannot be
performed

Check structure declaration of
struct or union.

Illegal pointer DCL.

Pointer declaration has more than one *
specification.

Pointer of type specifier void cannot be
declared.

Check pointer declaration.

Illegal function DCL

Attempt to specify struct/.union for
function return value,

Atternpt to declare function within
function form declaration or struct/union
structure declaration,

Attempt to use name of 'standard function
in function definition or declaration.

Check function definition or
declaration.

Illegal array DCL

Number of element specification in array
declaration not an integer or not

a positive value.

Array too large (exceeds 65535 bytes).
Attempt to declare array as local variable
without size reservation.

Check array declaration.

Illegal initialization

Attempt to initialize functions.
Attempt to initialize extern declaration,
parameter, Or union.

Attempt to initialize array or structure
using other than external definition.

Check initialization.

169

Chapter 8 Error Message Tables

Error Message

Meaning

Action

Illegal argument DCL

Attempt to declare function as parameter.

Check argument declaration for
function definition.

’identifier’ undefined

Attempt to use undefined identifier.

Check identifier. If not defined,
add appropriate definition.

identifier’ redefined

Attempt to define identifier already
defined.

Check identifier. If already
defined, use another name.

‘identifier’ not
a function

Attempt to use identifier as a function
without declaring it as a function.

Check identifier.

‘identifier’ not
a variable

Attempt to use identifier as a variable
without declaring it as a variable.

Check identifier.

Hlegal sizeof

Sizeof operand not identifier.

Check sizeof operand.

Illegal cast

Attempt to cast void, struct, union type.

Check cast type name.

lllegal break

Attempt to use break statement in other
than do, for, or while statement.

Use break statement inside of do,
for, or while statements only.

Illegal continue

Attempt to use continue statement in
other than do, for, or while statement.

Use continue statement inside of
do, for, or while statements only.

Too complex expression

Expression too complex.

Break expression down.

Too many nest

Attempt to nest if, do, for or while state-
ments deeper than 25 levels. System stack
overflow caused by too much depth in
multiple statements,

Eliminate some nesting.

Too many break/
continues

Number of break statements and continue
statements within do, for or while state-
ments exceed a total of 23.

Ensure that total of break and
continue statements do not
exceed 25.

P-code overflow

Overflow of P-CODE area (program tco
large).

Increase size of code area
(see page 26).

Symbol overflow

Overflow of SYMBOL table (too many
identifiers and constants).

Increase size of symbol area (see
page 26).

170

Program Execution Error Messages

3. Program Execution Error Messages

Error Message

Meaning

Action

’main’ not found

Computer unable to find main function.

Illegal 'main’

Too many initializers

Load file that includes main
function.

Attempt to specify argument for main
function,

Do not specify argument for
main function.

Too many initialized elements.

Check initial! values.

"identifier’ undefined

Attempt to use undefined identifier.

Define identifier.

*identifier’ not a
function

Attemnpt to use identifier as a function
without declaring it as a function.

Check identifier.

‘operands’ incompatible
types

Attempt to use incompatible operand
types in expressions or for return values.
Display appears as follows when relevant
operator does not exist: > ? : .

Check operand types.

‘operand’ Iilegal
operand

Operand type not correct.
Display appears as follows when relevant
operator does not exist: > 7 ; °,

Check operands.

‘operand’ Illegal value

Operand on right side.
Display appears as follows when relevant
operator does not exist: * 7 :

Check operands.

Illegal index

Attemipt to use negative value for array
subscript, or declared number of elements
exceeded.

Check subscript specification.

Illegal function call

Number of arguments for called function
does not match number of arguments
declared during definition of function.
Argument type cannot be converted to
parameter type.

Check number of arguments and
argument types.

Argument list too big

Argument list exceeds 128 bytes.

Decrease number of arguments.

Illegal stream pointer

Attempt to use an illegal stream pointer.
Open file not referenced.

Attempt to write to file or device onened
for reading.

Attempt to read from file or device
opened for writing.

Check stream pointer.

17

Chapter 8 Error Message Tables

Error Message

Meaning

Action

Mathematical arithmetic
error

Attempt to perform illegal mathematical
operation, such as division by 0.
Argument of standard function exceeds
allowable range.

Format error generated for float/double
type data.

Check numeric values.

Arithmetic overflow

Calculation result exceeds allowable range.

Check calculation.

Illegal argument

Argument of standard function exceeds
allowable range.

Check arguments.

Global overflow

Qverflow of global area (total size of
externally defined variables and stack
variables within functions too large).

Increase size of stack area {(see
page 26).

Stack overflow

Overflow in stack area {(argument list and
stack used by internally defined variables
too small due to return calls).

Increase size of stack area (see
page 26).

Abort

Execution interrupted by abort standard
function,

172

errno Error

4, errno Error

errno Value Meaning

2 (¥ Improper filename specification.
(2 Specified file cannot be found.

5 (@ Error in 1/0 device operation.
{(2) Problem with drive device,

9 (1) Incorrect stream pointer.

(2 Open file not referenced.

(3) Attempt to write to file or device opened for reading.
(@) Attempt to read from file or device opened for writing.

12 Overflow in work area (I/0 buffer) or file arca (RAM file).

I3 (1) Attempt to open file that is already opened.

(2) Attempt to open file with other than S identifier.

(3) Attempt made to open other than RS-232C file for both read and write.

(@) Attempt to open printer for reading,

(® File specified in remove or rename is other than disk file or file stored in memory.
(8 Attempt to execute remove or rename while file is open.

17 Newname specification in rename function aiready used as filename.

18 Different devices for oldname and newname specifications in rename function.
19 1/0 impossible.

24 Too many open files.

28 No more area on disk available for writing.

33 (D Attempt to perform illegal mathematical operation, such as division by 0.

{2) Argument of standard function exceeds allowable range.
(3 Format error generated for float/double type data.

34 Calculation result exceeds allowable range.

35 Attempt made to write to disk file which is write protected.
36 Disk needs formaiting,

37 (1 Overflow of RS-232C input buffer.

(2 Framing error detected at RS-232C port.

i A s
(@ Parity error or overflow error detected at RS-232C port.

38 Weak batteries.

173

Chapter 8 Error Message Tables

3. General Error Messages

Error Message

Meaning

Action

Ilegal file name

Filename incorrectly specified.

Check filename,

Ilegal device

Attempt to specify device which cannot
be used.

Check device name.

Different device

OId filename and new filename devices
different in rename operation,

Check filename.

Illegal file discrimination

Attempt to specify file with illegal
identifier.

Check filename,

Too many files

Too many files opened.

Close some files.

File not found

Specified file not found.

Check filename.

File already exists

Attempt to load file with name of file
already loaded (rename operation only).

Check filename or erase
currently loaded file using
NEW command.

Memory overflow

Overflow in work area (I/0 buffer) or file
area (RAM buffer),

Increase work area or file area
size (see page 26).

Open error

Attempt to open file that is already open.

Check filename.

1/0 not ready

Input/Qutput not possible,

Check /0 connection. Ensure
that power is switched ON.

Write protect error

Attempt to output to file which is write
protected.

Cancel write protection,

FDD no space

Attemnpt to write to a disk that is already
full.

Erase unnecessary files from disk
or use another disk.

1/0 read/write error

1/Q device operation error.

Check I/0 device.

FDD format error

Disk requires formatting.

Format disk.

FDD drive error

Abnormal disk drive operation.

Disk contents may be damaged.

RS-232C buffer overflow

Overflow of RS-232C input/output buffer.

Set R5-232C baud rate to slower
speed, or change XON/XOFF
specification.

aivivas Ao Tar s e PUMLAAT VR VEL S

data transfer procedure.

174

General Error Messages

Error Message

Meaning

Action

RS5-232C po error

Parity error or overflow error detected at
RS-232C port.

Check RS-232C connection and
data transfer procedure. Set baud
rate to slower speed.

Low battery

Battery power low.

Replace batteries or change to
AC adaptor.

C undefined error

Hardware problem or possible memory
abnormality caused by C program
execution.

Perform NEWALL operation.

178

Index

Index

e 46, 50

% construction 46
Tod 44

Tof 46, 51, 61

ox 46, 50

&x 51, 70

Nn 33, 43, 96
2-dimensional array 49, 61

A

a (append) 71

abort 149

Abort 172

abs 157

absolute value 157

access 128

access mode 128

acos 159

acosh 161
addition/subtraction operators 102
address 51, 70, 110
ampersand 70

angle 51, 164

angle mode 164

angle unit 158

angular measurement 51, 158
f8 key 17

Approximation of pi 87
argument 43, 45, 66, 126, 138, 141
Argument list too big 171
argument type declaration 66
arithmetic operators 5
Arithmetic overflow 169, 172
array 49, 108

array elements 104

array initialization 108

array memory area 119
ASCIH codes 46, 96

asin 159

asinh 161

assignment gperators 101
associativity of operators 102
asterisk 36, 142

atan 159

atanh 161

auto 65, 94, 105
auto variables 106

AUTO.EXE 36

B

Backspace 98

BAT 34

batch file 33

beep 164

BEL 98

Binary mode 129
binominal operators 101
bit AND 75, 101, 102
bit fields 114

bit logical operators 5
bit OR 101, 102

bit shift operators 5
bit XOR 101, 102
braces 52, 56, 103
brackets 49

break 65, 94, 104
BREAK mode 150
break statement 105
breakpt 150

key 39
BS 98
BS error 27

Buffer overflow 168
buzzer sound 164

C

[c] 9 11, 13, 15,17, 21, 24
C area 26, 27

178

index

Y

¥
C area capacity 26 compiler 6
C area memory status display 27 compiler language 6
C editor 8, 123 compiling 6, 8
C file 12 compound statements 103
C function 9 condition 104
C identifier 12, 35 conditional jump 104
C interpreter 8 conditional operators 101
C language 4 conjugate complex number 53
C program character notation 97 Console 125, 127, 128
C undefined error 175 const 65, 94
k) key 19 constant 95
CAL mode 9,19, 37 constant expression 114
calculation range 159 constant type char 96
calculator 9 coutinue 65, 94
calloc 119, 152 continue statement 105
carrier return 33, 98, 129 control characters 98
case 65, 94 control structures 4, 37, 103
cast 75 control structures for jump 104
cast operator 101 control structures for repeats 104
char 47, 65, 94, 95, 126 conversion characters 139, 143
character % 139 conversion specifications 138, 142
character array 117 cos 158
character code 50, 97, 166 cosh 160
character code (decimal) 97 cosine curve 79
character code (hexadecimal) 97 counter variable 59
character code table 97 CR 98
character constant 96 create a program 14
character format 50 [C/5] 12
character operator stack 28 creating file 30
character string 43, 62 cursor 22
character string input/output 116 cursor home position 165
clearerr 146
clrser 165 D
code area 26, 27 [data] 11
comma 45, 48, 126 data bank function 9
command 122 DATA EDIT mode 11
Command Eerror Messages 168 data expression 96
command line 13 data length 95
comments 45, 94, 126 daia siorage poinier i34
comment line 45 data structure = 113
common logarithm 163 data type 95
comparison 155 debugging 37

177

Index

decimal constants 99
decimal integers 46, 143
decimal value 44
declared variables 105
decrement operator 57
decrementing 57

default 635, 94

#define 115

define identifier string 28
#define statement 57, 95
#define token string 28
degree 5l

dest pointer 154

device name 128
Different device 174
directory area 28

Disk 125, 127
[disk] 11
do 65,94

““do~while” loop 58

double 47, 54, 65, 94, 95, 126

double argument 142

double precision floating-point constants
double precision value 67

double quotation marks 33, 100, 125
double-precision floating point 47, 54
draws a straight line 167

100

E

EDIT 13, 14, 123
[edit } 11, 19

EDIT command 19
editor 8, 19

else 65, 94

else ~if statement 104
end of file 71

endless loop 104
ernum 65, 94
enumeration type 114
EOF 71, 116, 129
equality operator 10, 102

Eratosthenes method 74

errno 115

errno value 147, 148, 173

€rTor messages 5, 168
escape sequence 96, 98, 138
£S key 9

execute programs I5, 32
execution 6, 8

exit 149

exp 163

exponents 100, 143, 163
expression 59, 104

expression input/output 117
extension 35

extern 65, 94, 105

extern declaration 112, 115
external storage device 11
F

factorial 68

false 52, 55

fclose 64, 71, 130

FDD drive error 174
FDD format error 174

FDD no space 174
feof 145

ferror 145

fflush 144

fgetc 131

fgets 135

field width 139, 142
File already exists 174
file area 26, 27

file input 71

file input/output functions
File not found 174

file output 71

FILE structure 127
Filename 122, 125, 128

flag 130

FLIST 13, 123

float 47, 65, 94, 95, 126
floating point 45, 46, 47, 51

116

178

Index

floating point calculation 6
floating point value 79, 157
floating-point constants 100
floating-point number 143
floppy disk 11, 122

fopen 64, 71, 127

for 65, 94

for, while, do ~while statement
“for”’ loop 58
forced conversion
Form feed 98
format 138, 141, 142
formula memory 9
fprintf 138

75, 101

fpute 134

fputs 136
fractional part 140
fread 136

free 153

free area 28

fscanf 99, 141

functions 43, 111, 126
function argument operations
function definition 65
function key menu 9
function key menu commands
function keys 10

function name 43, 65, 95
function type 65

fwrite 137

G

Gauss’ Method 1

general error messages 174

general memory status display
getc 131
getc (stdin) 130

getch 166
getchar 53, 57, 04, 130
gets 64, 134

global area 28
Global overflow 172

104

101

10

26

global variables
goto 65, 94
goto statement 105

BOLOXY 165

grad 51

Greatest Common Measure 58

68, 69, 85, 105, 107

H

hexadecimal constants 99
hexadecimal format 50
hexadecimal integer 46, 143
hexadecimal value 44, 46
HT 98

Horizontal tab o8
hyperbotic function 160

I

identifier g8, 35, 113

identifier character strings, constants
'identifier’ not a function 170, 171
‘identifier’ not a variable 170
*identifier’ redefined 170
*identifier’ undefined 170, 171
if 65, 94

if (condition) statement 52, 104
if ~else statement 52, 104

“if’’ selection statement 52
Illegal argument 172

Illegal argument DCL 170
Iliegal array DCL 169

Illegal break 170

Hlegal cast 170

Illegal char constant 168
Hlegal command 168

Illegal continue 170

Nlegal device 174

Illegal escape sequence 168
Illegal file discrimination 174
Iliegal file name i74

Illegal function call 171

Illegal function DCL 169

28

179

Indax

lllegal index 171

Illegal initialization 169

Illegal ‘main’ 171

Illegal pointer DCL 169
Illegal preprocessor 169

Illegal sizeof 170

Illegal storage class 169

lllegal stream pointer 171
Illegal string 168

Illegal struct/union 169

Illegal type 169

imaginary number 53, 55
#include 29, 87, 115
increment operator 57
incremental/decremental operators
incrementing 57

inequality 101

initial mode 9

initialize 43

input field 142

Input/output function 126
Input/Output Function Errors 147
(ws) key 22

INSERT mode 22

int 47, 65, 94, 95, 99, 126

int type 99, 111

integer 47

integer constant 46, 99

integer declaration 47

integer notation 47

interpreter 6, 8,13

inverse hyperbolic function 161
inverse trigonometric function 159
1/0 buffer 28

1/0 not ready 174

I/0 read/write error 174

1 139, 142

key 22

key 22

library functions 111
line 167

linec 167

linefeed 129

linking 6, 8

{list] 12

LOAD 13, 24, 122
[load 1] 1

load command 30
LOAD file table 28

load programs 32
local variable 29, 68
log 163

logl0 163

logical AND 101, 102

logical NOT 101

logical operators 5

logical OR 101, 102

long 47, 54, 65, 94, 95, 99, 126
long argument 140, 142

long type integer 99

loop counter value 61

loops 55

Low battery 175

M

machine language 5,6,8
macro 157
macro definition 115

main() 65
main function 65, 111
'main’ not found 171

malloc 119, 151
Martian animation 80, 82
Mathematical arithmetic error

MD-100 interface unit 11
Maonn ansd unrianra Q0
LYANEAAL CAELYA VW EAL LCRAEN N v

member operators 113
members H3

{memory] 12, 25

172

160

Index

memory address 5
memory area 25, 27
memory capacity 26
Memory display 75
memory functions 119, 126
memory map 28
Memory overflow 174
memaory status 25
memory storage area 105
memsize 119

menu display 10

fon key 10, 13
MENU mode 19
[merge] 12
module 65

modulus (remainder) 48, 101

Monte Carlo method 87

MS-DOS 4

multiple execution unit 103
multiple solution 53

multiple statements 52,103
multiplication/division operator 102

N
name 57, 127
[name] 11, 16, 31

natural logarithm 163
negative integers 99
nested loop 60

NEW 13, 123

NEWALL 27

[newc] 11, 19

newline 43, 63, 98

[next] 24

NL 98

No file 123, 168

normal characters 138, 142
NOT 101

MNuii 98, ii6

NULL pointer 116, 119
number of elements 152

numeri¢ functions 118, 126

numeric value 44
numeric variable data area 28

0]
octal constants 99
octal integer 143

octal notation 98

octal value 44

one-key command 17

Open error 174

’operand’ illegal operand 171
‘operand’ illegal value 171
‘operands’ incompatible types 171
opening and closing files (S) 117
operators 100

order operator 102

other standard functions 120, 126
output characters 42

overflfow check 154

overlay sheet 18

OVERWRITE mode 22, 23

P

P-code area 28
P-code overflow 170

parameters 125
parentheses 45, 126
period 139

Perpetual calendar 76
pointers 5, 51, 70, 109
pointer (stream) 127
pow 162

power 162

precedence 100
precedence of operators 102
precision 139
PIEprocessor 115
[preset] 12, 36

preset file 12, 36
primary operators 101
prime numbers 74

181

index

Printer 125, 127, 128

printf() 33, 45, 64, 138
process functions 126
program execution error messages
program module 65
programming language 4
Pseudo-random number generator
putc 133

putchar 64, 71, 132

puts 64, 135

Q

quadratic equation 53
R

r (read) 71

radian 51

RAM file 122, 125, 127, 128
random numbers 85

real number 53

RECALL function 17
recursive function cail 68
recursive recall 112

register 65, 94, 105

register variables 106
relational operators 3, 54, 101
remove 146

rename 147

repeat control 104
replacement text 115
Reserved words 65, 94
return 63, 94

Return value type 126
RS-232C 122, 125, 127, 128
RS-232C buffer overflow 174
RS-232C framing error 174
RS-232C interface 1]
RS-232C po error 175
RUN 6, i3, 13, 122

RUN command 29, 32, 38
RUN execution 150

S

“*S” identifier 12, 37, 127

[save] 11

scanf() 51, 64, 99, 141

scientific functions 6

scope 105

[search] 23

search function 23

selection statement 52
semicolons 58, 103, 126

separate compilation 30
sequential data file 11

[set] 9, 12

shift operator 102

short 47, 65, 94, 95, 126

signed 65, 94

signed decimal notation 140
simmultaneous linear equations 91
sin 158

sine curve 79

single character 46

single quotation marks 96
single-character input/output 116
single-precision floating point 47
sinh 160

sizeof 65, 94

Solution of simultaneous
linear equation a1

source 154

space 142

space characters 142

specify the memory status 26
sprintf 138

sqrt 162

square root 162

square value 67

sscanf 99, 141

Stack 28

stack area 26, 27

Stack overflow 172

standard error output stderr 149

standard functions 43, 64, 111, 116, 126

182

index

standard function name 94
standard functions for display 119

standard functions for
keyboard control 119

standard input device name 122
standard input sidin 130
standard library function 33
standard output device name 122
standard ouiput stdout 132
statements 66, 103

static 65, 94, 105

stderr 115

stdin 115, 130, 141

stdout 115, 138

storage area 110

storage classes 105

store a program in a file 16
strcat 64, 154

strchr 156

stremp 64, 155

strepy 64, 154

string 46, 47

string constants 100

string fuactions 118, 126
strlen 64, 153

struct 65, 94, 113

structure 6, 113

structure declaration 113
structure members 101
switch 65, 94

switch ~ case statement 104
symbol area 26, 27

Symbol overflow 170
symbol table 28

syntax analysis error messages 168

Syntax error 168
T

tag 113

tan 158

tanh 160

Text mode 129

Too complex expression 170
Teo many break/continues 170
Too many files 174

Too many include 169

Too many initializers 171

Too many nest 170

trace function 37

TRACE mode 13, 37, 38, 124, 150
trace off 40

trace on 38

trigonometric function 158
trinominal operators 101
TROFF 13, 40, 125

TRON 13, 124

TRON command 38

true 52, 55

type declaration 95, 112

type of value 70

typedef 65, 94

U

unary minus operators 99

unary operators 101
unconditional jump 105

ungetc 143

union 6, 65, 94, 113

UNIX 4

Unknown character 168
unnamed C file 11

unnamed file 16, 34, 43, 123
unsigned 47, 65, 94

unsigned char 140

unsigned constants 99

unsigned decimal integer 139, 143
unsigned decimal notation 140
unsigned hexadecimal notation 140
unsigned int 99

unsigned octal notation 140

TlinAnata KAAda 150
Upaaly LVEUUL ilT

user area 27, 28
user area capacity 26

183

Index

v

value 48, 51

variable 47

variable address 109
variable errno 147
variable name 49, 95
variable storage location 70
variable table 28
variable type 47
variance 89

void 65, 94

void function 112
volatile 63, 94

W

w (write) 71

while 62, 65, 94

while, for, do~while loops 104
while, if break 105

while, if continue 105

while loop 55

work area 26, 27

Write protect error 174

184

