T T R et WA OB

TR

CASID

ﬂ'.

PERSONAL COMPUTER

00

e

Introduction

languages for the PB-1000.
The PB-1000 Owner's Manual is provided together with this manual. Please first read the

CONTENTS

PART 1 GCe1-BASIC. ..ttt ami et e e 1
1.1 FEATURES OF GCe1-BASIC .. . e 2
1.2 CONFIGURATION OF BASIC PROGRAMS. 3
Operating MOogE.o o 3
DIreet MOGE . . et e e e e e 3
Program Mode. i 3

Line NUMDEIS « o o vttt e et e et am e e e e 3
SEAEMENSo\ 3

123 CONSTANTS o . oot e e 4
NUMETIC CONSAMIS v vt ettt e eee e e et s e 4
Character CONSIANIS .« .o v vttt a it i 4

1-4 WARIABLE S . ..ttt e e e e 4
Variable Names and Array Names.ot 4
ATTRYS . o oottt ettt e e e 5
Handling of Variables and Arrays e 5

1.5 OPERATORS .. .ttt ettt e e 5
AFIENMEtic OPEratOrS . . .o ottt e e 6
Relational Operatorscooeovivans R T 6
Logical OPEIAIOIS . . . o o v e s et e e e 6
StANG OPErAlOrS - . ..\t v e et e 7
Order Of PreCedenCe . . oottt e et c i e e 7

B TOUCH-KEY S . ittt e e 8
7 PLOTTER COMMANDS it ie s 9
DIP SWHERES - « -+ o v o e e e e e e et e e e 9
PLINtEr MOME . . et e e e ma e 10
PIOHEr MOBE & o ottt et et e 11
Example of Printing Using the Plotter Modeovvceennennn 13

1-8 COMMUNICATIONS L e 14
RG-2320 IO At . . ot et et ettt et 14

FIIE DBSCTIPION . o\ et et e e e e e 14
Data INPUYOULDUL\ e 18

~ List of BASIC COMMANGS vovneren e 16
129 DATA FILES Lt e e 17
© Sequential Files. 17

: RanNdom FHeS. .ttt et e ae e e e et 17
BASIC COMMANDS . .. ittt 19
MANUAL COMMANDSttt it e in s aaaaa s m e amasaens 20
PASS .\ i e 20

T UNE W L e e e e e a e 21
Loz = Y I R 21
CLEAR ..o i ee e e e e e 22
MON o e e e e e e e 24

CONTENTS

iy 25
VARLIGT T L 26
BUN 26
TRON | T 27
TRORE 1T 28
DA AL G e LT 28
e ENTAL COMMANDS L 29
STop | T 29
QO | L 30
BOSUE. T L 31
RETOm L 32
ON Gy e LI 33
ON Goeug e LT 34
Pt L 35
R e ESEIF=GOTO~ ELsE 11T 36
ot e 37
Er 38
U 39
mEAp T 40
REeTORe L 41
RN T 42
TaB .| T 43
Ry T 44
ORI 45
RN USiG T L 45
O NG T 46
e e 47
DERGHR T e 48
EEp 49
Npur T 50
NKpyg L 51
NPOTg. e L 52
D 53
oRASE e L 54
AL T 55
SR e LT 56
oRe e LT 56
S RABIDRAS 7 57
O AW 58
ON ERROR G e 59
s COTO- I 60
L T 61
SRR LI 62
R 62

CONTENTS

NUMERIC FUNGTIONS.\ 63
ANGLE ..o 63
SIN, COS, TAN. . . .\t e 64
ASN, ACS, ATN ..ot 65
HYP SIN, HYP COS, HYP TAN\ttt 66
HYP ASN, HYP ACS, HYP ATN\ttt 67
EXP o 68
LGT, LOG © o\ttt et et e 69
SO 70
BB . 70
OGN 71
INT o e 72
B o 73
FRAC © . e 73
ROUND . .. e e e e 74
Pl e 74
RND 75

CHARACTER FUNCTIONS ittt oot 76
CHRS . ot 76
ASC . 76
ST . . oot 77
VAL 78
MIDS .« . oo et 79
T C T - 80
LEFTS oo e et e e 81
LN e 82
HEXS . . oottt e e 82
BH 83
DEG .« .\ vt e 84
DM o 84
TIMES . ..o e 85
DATES . oo 86

STATISTIC FUNCTIONS\ttt e ettt 87
S AT e oo 87
STAT CLEAR. ...\ttt i 88
CNT. ..o P 88
SUMX, ‘SUMY, SUMX2, SUMXY e, 89
MEANX, MEANY. P 90
SDX, SDY, SDXN, SDYNttt 90
LRA, LRB.\ D 91
COR 91
EOX, EOY ..ttt o e 92

. /O COMMANDS.......0....... T I 93
LIS e 93
LPRINT ettt ettt 94
LPRINT USING ...t ettt ettt e e e 95

PART 1 Cu-BASIC .

1-1 FEATURES OF Cs-BASIC

Ce1-BASIC is based on Japan Industrial Standard {JIS) BASIC (C6207) which has recently
been officially formulated. This is a powerful version of the BASIC language, with enhanced

arithmetic functions and filing capabilities,

* Cs1-BASIC shares the following features with ordinary BASIC,

1. Ease of Understanding
The syntax of BASIC is easier for beginners to use.

2. Easy Program Writing

Writing and modifying programs can be performed easily with interaction between the
programmer and computer which provides feedback to the user as the program is written,
This allows the creation of simple and easy-to-understand programs,

* In addition, the following features have been added to Cs1-BASIC.

1. High Precision Arithmetic
Numeric values are displayed on the screen with 1 0-digit mantissas and 2-digit exponents
(internal calculation used 13-digit mantissa and 2-digit exponent),
2. Various scientific functions and paired-variable statistical functions
a) The foliowing scientific functions may be used in arithmetic operations.

SIN COS TAN ASN ACS ATN HYPSIN HYPCOS HYPTAN
HYPASN HYPACS HYPATN LOG LGT Exp SQR ABS SGN
INT FIX FRAC PI ROUND RND

b) Ce1-BASIC provides users with the following string functions.
CHR$ STR$ MiD$ LEFT$ RIGHT$ HEX$ ASC VAL LEN

c) Statistical functions including linear regression.

3. BCD Arithmetic
BCD arithmetic functions are provided for unequaled calculation accuracy for business, scien-

tific, and technical applications.

4. Memory File Function _

Since multiple programs can be stored independently in main memory so programs do nat
have to be loaded into memory each time they are run.

5. Extended Variable Names

Variable names can consist of up to 255 characters, including upper case and lower case
letters. Programs become easier to understand if variable names that indicate the contents

-- of variables are used.

" 6. Enhanced Debugging Functions

A TRON command displays the current line number of the program during execution to aid
in following program flow and spotting bugs.

7. Powerful Screen Editor

A powerful screen editor allows easy program modification by rewriting the program as it
" -Is displayed on the screen using keyboard input. This function takes full advantage of the
interactive characteristics of the BASIC language.

1-2 CONFIGURATION OQF BASIC PROGRAMS

8. Integrated Control of Peripheral Devices

The file management concept is adopted to facilitate easy control of peripheral devices such
as floppy disk drives. All exchanges of data with peripheral devices are conducted through
file transfers, so virtually the same concept can be applied throughout when using any
peripheral device.

9. Touch-Key Functions for Improved Operability

Touch-keys on the LCD display facilitate programming by allowing the operator to select oper-
~ations by simply pressing a key on the screen.

10.Timer Function
A built-in time makes it possible to execute programs that require timing.

1-2 CONFIGURATION OF BASIC PROGRAMS

Operating Mode

The message ‘‘Ready” appears on the display screen when BASIC is activated. In this mode,
the computer is ready to receive commands. Since commands can be directly entered and
executed when ‘‘Ready” is shown on the screen, this is calied the command mode. In addi-
tion, the state when an integrated program is executed by entering successive line numbers

is referred as the command mode.

Direct Mode
This mode executes BASIC without entering any line numbers. Execution begins after the
command is input and the EB key is pressed.

Program Mode

Whenever a line number is included with a command or commands, both the line numbers
and command are stored together in memory in ascending order. A series of numbered com-
mands stored in memory is called a program, and programs are executed using the RUN
command,

Each command line can contain up to 255 characters, and a space must be included be-
tween the line number and command, so each command line has a maximum capacity of

254 characters of user-designated input.

Line Numbers

The range of possnble line numbers is 1 to 65535.

Statements

A statement is the smallest executable unit in BASIC, and consists of commands, expres-
sions and functions. Two or more statements can be joined together by colons to form what
is known as multistatements. o R

PART 1 Ce-BASIC |

1-3 CONSTANTS

Numeric Constants

* Expressing Numeric Values

a} Decimal notation

b) Hexadecimal notation

Numeric values written in the order of sign, &H, and a 1 ~ 4 digit hexadecimal expression

0 ~9 A~F)

* Numeric Precision

a) Internal Numeric Calculations

13-digit mantissa and 2-digit exponent. However, Pl is handled as an 11-digit mantissa (i.e.
3.1415926536).

b} Calculation Results

Rounded off to a 10-digit mantissa and 2-digit exponent.

¢} Character Input Capacity

Up to 255 characters per line.

d) Internal Rounding

Internal calculation uses a 13-digit mantissa. For numbers in ordinary arithmetic calcuiations,
the 11th, 12th and 13th digits are rounded off when they are 049 or less, and rounded up
when they are 950 or more.

e) Calculation Result Display

When the exponent of an integer is less than 1 x 10 Integer expression

For decimal numbers with 10 digits or less: Decimal expression

Other numbers: Exponential expression

Rounded expressions: The 11th digit is rounded off when the results of calculations are

displayed.

String Constants

Strings encldseq in quotation marks.

1-4 VARIABLES

Variables Nemeric variables
I String variables Numeric array variables

Array variables —[
String array variables

Variable Names and Array Names

Variable names and array names:)
a) Are character strings with an upper case alphabetic character or lower case alphabetic

character the leading (first) position.

b) Are composed of upper or lower case alphabetic characters or numbers following the lead-
ing alphabetic character.

¢) Cannot use reserved words as the leading characters.

d) Can be up to 255 characters long.

1.5 OPERATORS

Arrays

a) Arrays are declared by a DIM statement.

b) Subscripts in an array are positive integers, and fractions are truncated.

c) The dimensions of an array are only limited by the capacity of internal stacks.
d) The maximum value of subscripts is only limited by memory capacity.

Handling of Variables and Arrays

a) The same variables and/or arrays can be used different programs.

h) String variables are stored in the character data area specified by CLEAR statements.

¢) Array variables may not be used unless they are first declared.

d) FIELD variables (see page 103} are only valid while a file is open, and they receive nulls
when the file is closed. However, FIELD variables take on a character length of three
when the file is closed.

1-5 OPERATORS

Operators —— Arithmetic operators Signs +,—
Addition +
Subtraction . -
Multiplication *
-~ Division /
Exponentiation N
Integer division ¥
Integer remainder of
integer division MOD
—Relational operators Equal to =
tT Does not equal <>, ><
. Less than <
Greater than >
Less than or equal to =<, <=
Greater than or equal to =>, >=
—Logical operators Negation NOCT
. Logical product AND
Logical sum OR
Exclusive OR XOR
- String operator : : +

ey

PART 1 Cu-BASIC

Arithmetic Operators (+, =, %, /, A, ¥, MOD)

Fractions are truncated in ¥ and MOD calculations, when the operands on both sides of
the operator are not integers.

In¥ and MOD calculations, the division is performed with the absolute values of the both
operands. In integer division (¥), the quotient is truncated 1o an integer. With the MOD
operator, the remainder is given the sign of the dividend.

The length of an expression is limited to 255 characters.

Relationatl Operators (=, < >, > << 2, = >, o=, < =)

Relational operations can be performed only when the operators are both strings or nu-
meric values., '

In relational operations on strings, the codes are compared from the beginning of the string.
if the length of the strings are different, the comparison is made according to the shorter
string. The shorter string is said to be smaller if the results of this comparison are equal,
When the result of a relationai operation is true (the conditions are established), the resuit
Is — 1. When the result is false (the conditions are not established), the result is expressed

as 0.

Logical Operators (NOT, AND, OR, XOR)

Logical operation operands are truncated to integers and the result is calculated by perform-
ing the operation bit-by-bit.

Negation Logical product

[X T noTx | Yy I x ap v |
0

| x
H ; % IH‘,'T 0
* N
Logical sum Exclusive OR
L X YT x or v ﬁi\'EXXOR'ﬂ
e B
Ena S B S S

String Operators (+)

» Strings may be concatenated using a + sign.

* The result of the operation {including intermediate results) may not exceed 255 characlers.

Order of Precedence
(.)

Scientific function
Exponentiation

Sign (+, -)

*, /¥, MOD

Addition and subtraction
Relational operators
NOT

AND

OR, XOR

*

CoOEmNIUALN

[y

1-5 OPERATORS

Operations are performed from left to right when order of precedence is identical.

PART 1 Ce-BASIC

1-6 TOUCH-KEYS

The 16 touch-keys on the screen are each assigned a character code value, so operation
of these keys can be read by the INKEY$ statement.

1line | O 240 & 21 @& 242 243
® 24 @ 245 & 26 ® 247
218 M 219 @ 250 @ om
@ 252 @ 253 254 255
8 columns

(D through (® are the numbers of the keys.
240 through 255 are the character codes (decimal) entered when these keys are pressed,

The program listed below assigns the words [YES] to key (3 and [NO] to key (8, and these
words appear on the display at the appropriate locations. Pressing either one of these keys
causes input of its character code value, and subsequent branching to the corresponding
routine,

YES NOD

10 CLS

20 LOEATE 0,3:PRINT "YES";
30 LOCATE 24,3:PRINT "NO":
40 A$=INKEY$

50 IF A$=CHR$(252) THEN 100
60 IF A$=CHR$(255) THEN 200
70 GOTD 40

100 'YES PROCESSING

200 'NO PROCESSING

1-7 PLOTTER COMMANDS

The routine noted below is very convenient when all 16 touch-keys are being used.

10 A$=INKEY$: A=ASC(A%})
20 IF A<Z240 THEN 10
30 ON A-239 GOTO | Line number for (1) key processing]

mne number for () key processing]

[Line number for (& key processing]

1-7 PLOTTER COMMANDS

Various graphs can be drawn using the plotter-printer commands. The commands that are
used with the plotter-printer are explained below.
The plotter-printer has two modes, a printer mode and a plotter mode.

Printer mode: Character output
Plotter mode: Line output

DIP Switches
There are 4 DIP switches on the printer. SW3 and SW4 are used for the following purposes.

OFF: Performs a carriage return (CR) when a CR code is
SW3 CR/CR-LF mode { sent.
ON: Performs a CR and a line feed (LF) when a CR code
is sent.

OFF; Y-axis scissoring is turned off.

W . .
SW4 Scissoring ON_IOFF {ON: Y-axis scissoring is turned on.

Note: AnLF code’immediately following a CR is invalid in switching from the CR to the
CR/LF mode-
(Also, an LF code is invalid if it follows immediately after a terminator in an ESCAPE

sequence.)

* Line Drawing Range when Scissoring is ON.

Paper Width 100 mm 114 mm A5 BS Ad
X direction 82 mm 96 mm 130 mm 164 mm 182 mm
—Y direction 120.2 mm — 183.5 mm 2228 mm 708 mm
+Y direction 6 mm —_ 6 mm 6 mm 6 mm

Print columns (51, 1) 34 40 54 68 80

PART 1 Ca-BASIC

Printer Mode

* Control codes

Backspace 08H
Paper feed OAH
Back feed 0BH
Carriage return 0DH
Escape (ESC) 1BH

* Character Font

ESC
ESC
ESC
ESC
ESC
ESC

+

+
+
+
+
+

V (Terminator)
v (Terminator)
E (Terminator)
e (Terminator)
W (Terminator)
w (Terminator)

(used in the character mode)

(Escape codes are not used in the graphic mode.)

Set italics ON,

Set italics OFF.
Set boldface ON.
Set boldface OFF.
Set underline ON.
Set underiine OFF,

Other graphic commands (excluding P and Q)

Plotter Mode

1-7 PLOTTER COMMANDS

Command

Purpose

Graphic Commands

O [absolute X coordinate, absolute Y
coordinate) (Terminator)

Defings an origin of ORG coor-
dinate.

D [starting X coordinate, starting Y
coordinate] [, X coordinate, Y coor-
dinate]” (Terminator)

* Al least one parameter must be present.

Draws straight lines connecting
the points specified by ORG
coordinales.

I X displacement, Y displacement [, X
displacement, Y displacement] *
(Terminator)

Draws straight lines connecling
the points defined by the speci-
fied displacemenis in X and Y
directions from the current pen
position.

M X coordinate, Y coordinate
(Terminator)

Moves the pen holder assembly
with the pen up to the point de-
fined by the specified ORG
coordinates.

R X displacement, Y displacement
{Terminator)

Moves the pen holder assembly
with the pen up from the current
pen position to the point defined
by the specified X and Y dis-
placements.

A starting X coordinate, starting Y
coordinate, diagonal X coordinate, di-
agonal Y coordinate (Terminator}

Draws a quadrangle whose two
diagonal points are defined by
the two specified ORG coor-
dinates and whose sides are
parallel to the X and Y axes.

C [X center coordinate, Y center coor-
dinate], radius [, initial arc angie, final
arc angle]} (Terminator)

*final arc angle > initial arc angle

Draws a circle or circular arc
around the center defined by
the specified ORG coordinates.
It draws an arc when the angle
parameters are specified.

X _ axis direction, size of scale division,
. humber of scale divisions (Terminator)

" 0 < axis direction < 4, size of scale divi-
sion > 0, number of scale divisions > 0

Draws a coordinate axis in the
+Y, +X, =Y or — X direction
from the origin of ORG coor-
dinate.

G direction of stripes, range in X axis

direction, range in Y axis direction

[, stripe separation] (Terminator)

"0 = direction of striped < 3, stripe sepa-
ration > 0

Draws herizontal or vertical
stripes frem the current pen po-
sition within the specified range.

Characlar/Nurmaeric¢

Commands

L line type {Terminator) -
0 = iine type < 4

" solid line, broken ling, ons-dot

Specifies a iine type which is a

chained line or two-dot chained
line.

B line pitch (Terminator)
*0 = broken line pitch < 1000

Specifies the pitch of a broken
line, one-dot chained line, or
two-dot chained line.

S sx[, sy] (Terminator}
*0 = character scale < 16

_Specifies the size of characters
and symbols 1o be printed.

Name
ORIGIN O
DRAW O
RELATIVE O
DRAW
MOVE O
RELATIVE O
MOVE
QUAD O
CIiRCLE O
AXIS @)
GRID O
LINE TYPE -

O
LINE SCALE

C
ALPHA 7
SCALE o
ALPHA'
ROTATE O

Q rotational angle (Terminator)
*0 = rotational angfe (orientation) < 4

Specifies the rotational angle
_(orientation) of characters and
symbols to be printed.

11

PART 1 Ci-BASIC

Lj_ Name Command Purpose
B 1SPACE C| Z spacing between current and next Specifies the spacing between
S characters [, spacing between current the current and next characters
E and next lines) {Terminator) and/or the spacing between the
g current and next lines,
g YOKO O| Y horizontalivertical selection Specifies whether subsequent
E {Terminator) character strings are 1o be print-
£ "0 = horizontalfvertical selection < 2 ed horizontally or vertically.
3
Z |PRINT O P character string {Terminator) Allows the specified character
o strings or data to be printed
g white in the graphic mode.
E MARK O| N mark number (Terminator) Draws the specified mark cen-
o "0 = mark number < 10 tered at the current pen position.
NEW PEN O J color of pen (Terminator) Specifies the color of pen: black,
. . | 70 = color of pen < 4 blue, green, red.
e
& |LINE FEED C[F number of lines {Terminator) Feeds the paper the specified
E number of lines,
S |HOME O| H [distance from foremost drawing Redefines the absolute coor-
5 point] (Terminator) dinate system, or moves the pen
= * distance from foremost drawing point = | holder assembly for inspection of
S 0. ' the drawing,
&)
TEST O| @ (Terminator) Allows triai drawing or a check
for proper inking,
52 TAB A | T number of print positions (Terminator) | Specifies a tab position.
5E
E FORMAT 4|, { 0} (Terminator) Specifies a formatted program
&F 1 listing.

NOTE 1:

NOTE 2;

* O indicates the command is effectiv
* A indicates the command is effectiv
O indicates the command is effectiv

An asterisk indicates that the term
Braces indicate that at least on
Brackets indicate that the para

preceding it may appear more than once,

e of the parameters enclosed must be specified.
melers enclosed may be omitted.

All parametérs are real numbers with up the 3-digit integers; any fractional part must be

a multiple of 0.2 unless otherwise specified (i.e. range is —999.8 ~ 959.8).

e in both the character and graphic modes.
e only in the character mode.
e only in the graphic mode.

Exam

1.7 PLOTTER COMMANDS

ple of Printing Using the Plotter Mode

10

20
30
Lo

50
79
eg
R,
109
110
120
137
160
150
160

LPRINT CHRE(&HIC);CHR$ (2H25)
DIM X(8),Y{6):XK=,15:8=43:2NCGLZ 0§

FOR K=1 TO £:LPRINT "J";K-1

O¥=C8x ([K—1) MDD 21423:0V=-S5xINT(1¥-1)/21-45
LPRINT "QM":0X; ", " 0Y

FOR I=T TO K41
Y{I)=R=xSIN{360%I/(K+2)):Y{I)=2=C05(380=xI/(X42))
NEXT I

FOR I=1 TO 10+5x=K

X(X+2)=X{(0):¥{K+2)=¥{0) ~ B
FOR J=0 TC K+l

(X

(J),-2):Y1=ROUNDI(YIZ),=2)

X2=ROUND (X (J+1),~2):Y2=ROUNDIV(5+1) . -2)

LPRINT "D";X1;",":¥i;", ":X2:".":v2

¥(J)=X{J)+KK* (X (J+1)~ (J) Y22y ({g) +KE= (Y {J+1)-Y(J))

NEXT J:NEXT I:NZXT K:ZND

13

14

PART 1 Cuw-BASIC

1-8 COMMUNICATIONS
RS-232C Interface

The RS-232C interface is the most widely used type of port for communications with other
computers or other external devices.

* Input fites, output files, and input/output files can be specified,

* Data are transferred to external devices via a communications line. This communication
line is connected to the RS-232C port and data transfers are made over a duplex line by
the start-stop {asynchronous) method.

* To prevent the joss of data that has been input, the data are aiso sent to a dedicated com-
munications buffer and can be recalled with INPUT statements,

File Descriptor
The file descriptor is input in the following format,

COMO : [iSpeed], {Parity], [Data], [Stop), [CS], [DS], [CD), [Busy], [Code]]
Example: COMO : 2,E 8 1, N, N, N, B, N

COMO: 2 E, 8 2
a) Baud rate specification (Speed)

1 9600 (BPS)
: 4800 (BPS)
: 2400 (BPS)
: 1200 (BPS)
600 (BPS)
300 (BPS)
150 (BPS)
75 (BPS)
If the Baud rate is not Specified, see PART 12 of "OWNER'S MANUAL" for setting the
DIP switches for external devices.

CuNWA G

b) Parity bit ép;cification (Parity)

N : No parity
E : Even parity
O : Odd parity

¢) Character bit length specification (Data)

7 : JIS 7 bits
8 1 JIS 8 bits

d) Stop bit specification (Stop)
1 : 1 bit
2 : 2 bits

e)

B

1-8§ COMMUNICATIONS

CTS signal control (CS)

C : Controlled by CTS signal
N : CTS signal ignored
During CTS signal control, nothing is sent until CTS is ON.

DSR signal control (DS)

D : Controlled by DSR signal

N : DSR signal ignored.

During DSR signal control, an NR error is generated when data is received while DSR
is OFF. Nothing is sent until DSR is ON.

g) CD signal control (CD)

C : Controlled by CD signal
N : CD signal is ignored.
During CD signal control, an NR error is generated if data is received while CD is OFF.

h) Buffer busy control (Busy)

B: Buffer busy control

N : No buffer busy control

An XOFF code (13H) is sent and data transfer from the host is temporarily halted when
busy control is invoked and the empty area of the buffer is 64 characters or less. After
the XOFF signal is sent, the data in the buffer is read. If there are 32 or fewer characters
remaining in the buffer, the XON (11H) signal is sent and a send request is issued to the
host. If the XOFF code is received from the host, data transfer is halted. Transfer is restarted

when the XON code is sent.

System of input/output codes (Code)

S : SI/SO controf

N : No SIfSO control

The character bit length during SI/SO control is 7 bits. To send a code that is greater than
or equal to 80H, the SO code (OEH) is sent and operations remain in the SO mode until
a code of 7FH is sent. To send a code equal to or less than 7FH in the SO mode, an S
code is sent and operations enter the S| mode. Character codes 80H ~ 8FH are processed

as control codes in the SO mode.

Parameter default values (initial values)

COMD 2, B, 8 1, N, N, N, B, N
Speed : 300 BPS
Parity . Even
Data bits : 8
Stop bits : 1
cs : Not checked
- DS.. ‘- : 'Not checked - _
CD : Not checked i
Busy "1 XON/XOFF control
Code " No SIS0 control.

15

16

PART 1 Cu-BASIC

Data Input/Output

The OPEN command is used for data input/output using the RS-232C interface. Processing
is usually performed with sequential access files to facilitate data input/output. Random ac-
cess files may also be opened, but such random access file commands such as GET and
PUT may not be used.

OPEN “COMO : 5, E, 8, 2" AS %1
The SAVE and LOAD commands are used for input/output for program files.

SAVE "file descriptor”
LOAD " file descriptor"

Input and output of data files is performed using the [SAVE] and [LOAD] keys in the MENU
mode. Exercige care when using the [LOAD] key because the data input is delayed untii
the & key is pressed.

List of BASIC Commands

The BASIC commands and functions related to the RS-232C port are shown below.

Command Purpose

OPEN Declares that communications line in use.

CLOSE Closes communications fine that was open.

PRINT # Outputs data to communications line.

PRINT # USING | Outputs data 1o communications line.

INPUT # Reads data from communications line.

LINE INPUT # Reads data from communications line.

INPUTS Reads data from communications line.

EOF - - Function indicating receive buffer status.

LOF Function indicating number of bytes remaining in receive bufier,

SAVE Outputs program to communications line.

LOAD Reads program from communications line.

MERGE Reads aqd merges program from communication line with
L program in memory.

1-8 DATA FILES

1-9 DATA FILES

Data files Sequential files

l_ Random files

Sequential Files

Inputting or outputting data in sequence starting from the first item in the file is referred to
as sequential processing.

* File Specification
Files for input or output are specified by the OPEN command.
OPEN '‘file descriptor” FOR INPUT AS # file number (Input specification}
OPEN "‘file descriptor” FOR OUTPUT AS # file number (Output specification)
OPEN ‘‘file descriptdr” FOR APPEND AS # file number {Append specification)

* Input and Output Commands

BASIC provides input and output commands for both inpu! and output files, and a function
that detects the end of a file {(EOF) is also included.

Command Speg;gg;iion Speg:l;ftiggtion Sp‘te\gi?i?:g(tjion
PRINT x o] o]
PRINT # USING x o o]
INPUT & o} X x
LINE INPUT # o] x x O : Execution possible
INPUT & C x x x : Execution impossible
ECF o — —

* Data Configuration

Data are arranged in variable-iength records. Delimiters can be CR codes (0DH), commas
(2CH), spaces (20H), double guotation marks (22H), or CR - LF codes (ODH - 0AH). Spaces
(20H) may also be used as delimiters for numeric variables. A SUB code (1AH) is written at
the end of the file.

Random Files

Input and output that is performed without regard to sequence is called random access

processing.

* With random files, records specified by record numbers are processed, and an OPEN state-
ment is used to process the file as an input/output file.

OPEN *“‘file descriptor” AS # file number

* The GET and PUT statements are used for data input and output commands. The GET
and PUT statements are used to input data to and output data from the input/output buffer
Created by the OPEN statement.

* The FIELD statement must be used to assign a string variable to the input/output buffer
to use the data in the buffer. '

* The LSET and RSET statements are used for assigning variable strings allocated to the
input/output buffer.

PART 1 Cu-BASIC

* The size of the current file is shown by the LOF function.
* Processing of random files when the data is in fixed-length records {256 characters maxi-
mum) is performed sequentially, and data delimiters are not used.

The method for entering statements is explained below.

* Words in bold type are commands or functions, and they must be entered as shown.

* Braces indicate that one of the parameters enclosed must be specified.

* Commas contained in braces must be written in the position shown,

* Brackets indicate that the parameters enclosed may be omitted. Brackets themselves are
not entered,

* An asterisk indicates that the term preceding it may appear more than once.

* Numeric expressions—Constants, expressions, and numeric variables (e.g. 10, 10 + 25,

A, unit cost % quantity)
* String expressions—String constants, string variables, and string expressions (e.g. “ABC",

A$, and A$ + BS)
* Expressions—General term for numeric and string expressions
* Arguments—Elements used by commands and functions

Example: MID$ function

MID$ (string array, position [, number of characters])
String expression Numeric expression Numeric expression

The term “'string expression” under “'string array” describes that array. Likewise, “numeric
expression” under “position” and “numeric expression” under “‘number of characters” are
descriptors. Also, since the comma and number of characters are enclosed in brackets, they

may be omitted.
Example:” GOSUB Statement

Branch line number
Line number

GOosus
Program filename
String expression

This example iliustrates two descriptors for GOSUB: the line number of the subroutine to
which the program branches and filename to which the program branches.

BASIC COMMANDS

ey

20

PART 1 Cas-BASIC

T IRYEN o
Y i‘:ﬁ“ 3t A«Hu,,._\,i_,\;.];.-,-,qu;

+ .'-.'-',)
I ¥ 5N 2
"":—{. 3
At R "{"fh o '.E!'-'.”.f".

* o

PURPOSE: Specifies or cancels a password.
FORMAT: PASS (“password™)

String expression

EXAMPLE: * PASS “TEXT™
PARAMETERS: 1. The specified password is registered for the specified file.

2. The password must be a string of 1 ~ 8 characters.
3. All characters after the first 8 are ignored when 9 or more characters
are entered.

EXPLANATION:

1.

2
3.
4

[$)]

The password is used to protect a program file.

- The password is registered in the BASIC programming mode.

Executing this command registers a password when no password previously exists.

. Executing the PASS statement using a previously registered password cancels the pass-
word. Specitying a password that is different from that registered, results in a PR error.

. Only one password may be used for each file.

6. The following statements and commands may not be executed when the currently speci-

7.

8
9

S

fied program file is protected by a password.

LIST, LLIST, DELETE, EDIT, NEW

Password specification is necessary when the SAVE command is executed for a program

file which is protected by a password.

- A program protected by a password cannot be saved in ASCI| format.

. A password cannot be used in the CAL mode.

EE: LOAD, CHAIN, MERGE
A password is specified for the external files when these commands and
statements are executed.

MANUAL COMMANDS

NEW

PURPOSE: Deletes a program.
EXAMPLE: NEW

EXPLANATION:

< Deletes the currently specified program.

*. “Ready” is displayed on the screen atter the program is deleted, and the computer stands
by for command input.

3. Al files that are currently opened are closed.

4. This command cannot be executed for program files that are protected by a password.

5. This command cannot be used in the CAL mode.

SYSTEM

PURPOSE: Indicates the CLEAR and ANGLE settings and the free area for work.

EXAMPLE: SYSTEM

EXPLANATION:
Indicates the CLEAR and ANGLE settings and the free area available for text, numeric vari-

ables, and string variables.
SEE: Memory map

SAMPLE -
EXECUTION: SYSTEMES

SYSTEM |
ANGLE @ CLEAR 258.0.1024 |
FREE 3@72 V.768 $:256 |
‘ |

ralues shown for FREE, V, and § are free areas for text, numeric varia-
bles, and character variabies, respectively.

21

22

PART 1 Cu-BASIC

CLEAR

PURPOSE: Clears all variables and determines the amount of space available 1o
BASIC according to the parameter entered. Also closes any files that are
open.

FORMAT: CLEAR [character area size] [, machine language area size] [, system work
area size]

EXAMPLE: CLEAR 500, 100, 1000

PARAMETERS: 1. character area size: Numeric expression
Determines the size of the area into which text data can be entered.

When the NEWALL command is executed, the size that is set aside
varies according to the memory capacity.

Memory capacity (bytes) Character area size (byles)
8K 256
40K 1K (=1024)

2. machine language area size: Numeric expression (< 4K)
Determines the size of the area available for machine language pro-
grams. When NEWALL is executed, O byte is specified.

3. system work area size: Numeric expression f =4KB for BKB RAM

< 36KB for 40KB RAM
Determines the size of the system work area. When NEWALL is ex-
ecuted, 1/4 of memory capacity is specified (1024 for 8KB RAM, 9215
bytes for 40KB RAM). See the memory map for details on the system
work area.

4. The size of the system work area cannot be set during program exe-
cution,

* 5. The total size of the character area and the machine language area
must be less than the system work area size.

Memory Map

60001

7000H

FFFFH

System work area
(Not available to the user)

Machine language area

110 buffer

Character operation stack

System work free area
(Numeric variable free area)

FOR stack

GOSUB stack

Variable data area

Variable table

Character data area

Character data free area

BASIC file area

ASCI file area

Free area

ASCII directory

BASIC directory

}

}

Assembly
language size

Character
area size

MANUAL COMMANDS

System work area size

Text area

23

24

PART 1 Ce-BASIC

MON

PURPOSE: Activates the monitor,
EXPLANATION:

1

. Activates the monitor. See the explanation of the monitor mode on page 192,

2. The ">" prompt appears on the screen and the compuler stands by for command input
when MON is entered and the BB key is pressed.

3. The computer returns to the MENU mode when [Mis pressed, and to the CAL mode when
&Nis pressed.

PURPOSE: Deletes program lines.)

FORMAT: DELETE start line number [{ - } [end line number}}

Line number Line number
EXAMPLE: DELETE 50 - 100

PARAMETERS: 1. start line number: Integer in the range of 1 = fine number < 65535

2. end line number: Integer in the range of 1 é line number = 65535

EXPLANATION:

1.
2.

3.

0 o

Deletes program lines within the specified range.
A minus sign is used as the delimiter between the start line number and the end line

number.

The four examples below illustrate specitication of the delete range.

a) DELETE100 B3 (Line 100 is deleted.)

b) DELETE100 - 200 [(Lines 100 through 200 are deleted.)

¢} DELETE200 - E= (Lines from 200 through the end of the program are deleted.)
d) DELETE ~ 50 ER (Al lines from the beginning of the program through line 50

- o are deieted.) -

. The start line number must be less than or equal to the end line number. ‘

- All lines above the start line number are deleted when the specified start line does not
exist. Similarly, all lines below the end line number are deleted when the specified end
line number does not exist.

. The computer stands by for command input when deletion is complete.

. This command cannot be used when the currently specified program file is protected by
a password. o o o T T

. This command closes all files that are open.

. This command cannot be used in the CAL mode.

MANUAL COMMANDS

LIST

PURPOSE: Displays all or a part of the currently specified program,
FORMAT: [start line number] | - [end line number]]

LIST Line number Line number

[-]

EXAMPLE: LIST 100

LIST 100 - 300

LIST - 400

LIST

PARAMETERS: 1. startline number: Integer in the range of 1 =< line number = 65535

2. end line number: Integer in the range of 1 _sj line number é 65535

EXPLANATION:

1.
2,
3.

7.
8.
9.

Displays the currently specified program in the range specified by the line numbers.
A minus sign must be used as the delimiter between line numbers.
The following five examples illustrate specification of the display range.

a} LIST &3 (All lines from beginning of programy)

b} LIST 30 @B (Line 30)

¢) LIST 50 ~ 100 & (Lines 50 through 100)

d) LIST 200 - &3 (From line 200 through end of program)

e) LIST - 80 &8 (From beginning of program through line 80)

. Using a period in place of the line number displays the most recently handled (i.e. written,

edited, executed). If a program is halted during execution by an error, executing “LIST ."
displays the line in which the error was generated.

. When the specified start line number does not exist, the first line number above that speci-

fied is taken as.the start line number.

. When the specified end line number does not exist, the greatest line number not exceed-

ing that specified is taken as the end line.

The start line number must be smaller than the end line number.

LIST command execution can be halted by pressing the [key.

Press the o) key to momentarily halt LIST command execution. To restart execution, press

the &3 key or one of the alphanumeric keys.

10.The computer stands by for command input 2fter the program list is displayed.
11.This command cannot be used if the currently specified program file is protected by a

password.

12.This command cannot be used in the CAL mode.
SEE: EDIT, VARLIST

25

25

PART 1 Ci-BASIC

EDIT

PURPOSE: Enters the BASIC edit mode.

FORMAT: [start line number)

EDITJ
Line number or period J
[.]

EXAMPLE: EDIT 100

PARAMETERS: start line number: Integer in the range of 1 < line number = 65535

EXPLANATION:

1. Enters the BASIC edit mode and displays the program from the specified line number.
The cursor is displayed and editing becomes possible when either the & or ES key is
pressed.

2. Using a period in place of the line number displays the most recently handied (i.e. written,
edited, executed). If a program is halted during execution by an error, executing “EDIT "
displays the line in which the error was generated.

3. When the specified start line number does not exist, the first line number above that speci-
fied is taken as the start line number.

4. This command cannot be used if the currently speciiied program file is protected by a

password.
5. This command cannot be used in the CAL mode.
SEE: LIST

VARLIST

PURPOSE: Displays variable names and array names.

EXANMPLE: VARLIST

EXPLANATION: :

1. Displays all currentiy exisiing variabie names and array names.

2. VARLIST command execution can be halted by pressing the e key.

3. Press the folkey to momentarily halt VARLIST command execution. To restart execution,
press the @8 key or one of the alphanumeric keys.

4. The computer stands by for command input after the variable list is displayed.

- SAMPLE - . —

EXECUTION: VARLIST 23

| VARLIST
R AB ACS() A
AARAAAAA F

e EEEEE————————.

MANUAL COMMANDS

RUN

PURPOSE: Executes a program.
FORMAT: RUN [execution start line]
Line number
EXAMPLE: RUN
RUN 100

PARAMETERS: start line number: Integer in the range of 1 < line number = 65535
EXPLANATION:

1.
2.

(o BREL I N]

Execution starts from the beginning of the program when the line number is omitted.
When the specified start line number does not exist, the first line number above that speci-
fied is taken as the start line number.

. This command closes all files that are open.

. Variable and array values are not cleared.

. This command cannot be used within a program.
. This command cannot be used in the CAL mode.

27

28

PART 1 Cu-BASIC

TRON

PURPOSE:
EXAMPLE:

EXPLANATION:

1. This command specifies the trace mode. The filenames and line numbers corresponding
{0 subsequently executed files and lines are displayed enclosed in brackets.

2. Filenames are displayed at the beginning of program execution or when the program file
is changed by GOTO “filename”, etc. Line numbers are displayed each time a line is ex-
ecuted.

3. The program‘stays in the TRON mode until the TROFF statement is executed.

Specifies the trace mode.
TRON

SEE: TROFF
SAMPLE
EXECUTION: RUNES
[TEST)
(10] (20] (1200] [1018]
(1@20] [1e30] [1840] [1050)
[30] [48] [50] (60]

TROFF

PURPOSE: Cancels the trace mode.

EXPLANATION;
Cancels the trace mode (entered using the TRON statement),

SEE: TRON

FUNDAMENTAL COMMANDS

)

= S
y tmc S dly 02 4

PURPOSE: Terminates program execution.

XAMPLE: END

EXPLANATION:

1. Terminates program execution, and the computer stands by for command input.

2. Closes all files that areropen.

3. Variables and arrays are not cleared.

4. Any number of END statements can be used in a single program. Program execution 1s
terminated and open files are closed automatically at the end of the program even if an

END statement is not included.
5. When files are closed, an OM error is generated for each of the files that cannot be closed

due to insufficient memory capacity.
6. When ON ERROR GOTO is specified, error branching is not performed even if the OM
error message is displayed. The CLOSE statement should be included before the END

statement in error handling routines.
SAMPLE PROGRAM:

10 FOR I=1 TO 20

20 IF I>10 THEN END
30 PRINT I; -

40 NEXT I

29

miev b s e

30

PART 1 Cu-BASIC

STOP

PURPOSE; Temporarily halts program execution.

EXAMPLE: STOP

EXPLANATION:

1. Temporarily halts execution of a program, and the computer stands by for command input.
The ™ key is pressed while holding down the 1 key to resume program execution.

2. Open files, variable values and array values are retained as they are al the point when

execution is halted.
3. The STOP status is canceled when an error is generated, the mode is changed, or the
program is edited while program execution is halted.

SEE: CONT
SAMPLE PROGRAM:

10 FOR I=1 T0 10

20 IF I=6 THEN STOP:PRINT
30 PRINT I;

40 NEXT I

FUNDAMENTAL COMMANDS

GOTO

PURPOSE:
FORMAT:

SAMPLE:

PARAMETERS:

EXPLANATION:

Branches unconditionalty 1o a specified branch destination.

branch destination line number

Line number
GOTO v) "
program filename
String expression
GOTO 1000

GOTO *“'DEMO1”

1. branch destination line number: Integer in the range of 1 = line num-
ber = 65535

2. program filename: String expression.

1. Specifying a line number causes program execution to jump to that line number in the

current program.

2. Specifying a program filename causes program execution to jurnp to the first line number
of the specified program file.

3. A UL error is generated when the specified line number does not exist, while an NF error
is generated when the specified filename does not exist.

SAMPLE PROGRAM:

10 PRINT

"PRESS [sTop)”

20 PRINT "T0O EALT EXECUTION"
30 PRINT. .

40 FOR I=1 TO 30:REXT I

50 GOTO 10

31

PART 1 Cu-BASIC

GOSUB 1

PURPOSE: Jumps to a specified subroutine.
FORMAT: branch destination line number
[Line number
GosuB I| “program filename™

[String expression

EXAMPLE: GOSUB 100
GOSUB “'SAMPLE"
PARAMETERS‘: 1. branch destination line number: Integer in the range of 1 < line num-
ber < 65535
2. program filename: String expression.

EXPLANATION:

1. Program execution branches to the subroutine that starts at the specified line number.
Execution is returned from the subroutine by the RETURN statement.

2. Nested subroutines that call another subroutine (from within the present subroutine) are
possible to the extent allowed by the memory stack capacity (see Memory map}. Exceed-
ing the memory stack capacity results in an OM error.

3. AUL error is generated when the specified line number does not exist, while an NF error
is generated when the specified filename does not exist.

4. A GS error is generated when the CLEAR statement is used within a subroutine,

SEE: RETURN
SAMPLE PROGRAM:

10 REM***xMATNx*x*

20 GOSUB 40

30 END

40 REM*>¥SURROUTINE Txw
50 PRINT"SUBROUTINE 1"

80 GOosus 80

70 RETURN

80 REMxxxSUBROUTINE 2w
o0 PRINT"SUBRAUTIND 3"

FUNDAMENTAL COMMANDS

RETURN

PURPOSE: Returns execution from a subroutine to the main program.

FORMAT:
i Return line number
RETURN Line number
“program filename”
String expression

EXAMPLE: RETURN
' RETURN 30
PARAMETERS: 1. line number: Integ rin the range of 1 =< line number = 65535
2. program filename: Siring expression.
EXPLANATION:

1. Returns execution to the specified line number or program filename.,
2. The defauit option is line following that which called the subroutine when the line number

specification is omitted.
3. Specifying a line number returns execution to the specified line in the current program
file. If the subroutine has been called from another program file, execution returns to the

specified line number of the subroutine.
4. When a program filename is specified, execution returns to the beginning of the specified

program file.
5. A GS error is generated when the RETURN statement is executed without first executing

a GOSUB statement.
SEE: GOSUB, ON~GOSUB
SAMPLE PROGRAM: .

10 REM SU3BROUTINE

20 GOSU3 100

30 ZND

100 PRINT"SUBROUTINE 1°
110 Gosuz 209

120 REZTURN

200 PRINT"SUBROUTINE 27
210 RETURN

33

34

PART 1 Ca-BASIC

ON GOTO

PURPOSE: Jumps to a specified branch destination in accordance with a specified
branching condition.
FORMAT: ON condition GOTO [branch [. [branch
Numeric expression destination] destination]]*
destination branch line number
line number
Branch destination: program file name

string expression

EXAMPLE: ON A GOTO 100, 200, 300

PARAMETERS: 1. branch condition: Numeric expression truncated to an integer
2, line number: Integer in the range of 1 < line number = 65535
3. program filename: String expression.

EXPLANATION:

1. The GOTO statement is executed in accordance with the value of the expression used
for the branch condition. For example, execution jumps to the first branch destination speci-
fied when the value is 1, to the second destination when the value is 2, etc.

2. Program execution does not branch and execution proceeds to the next statement when
the value of the branch condition is less than 1, or if a branch destination corresponding
to that value does not exist.

3. Up to 99 branch destinations may be specified.

4. Line numbers and program filenames cannot be mixed as branch destinations.

SAMPLE PROGRAM:

10 INPUT"1 GOR 2":A
20 ON A GOTO 40,50
30 END

40 PRINT"ONE":
50 PRINT"TWO":

N
N

)

Lt} 17y

v

Execution jumps to line 40 if 1 £Fis entered or to line 50 if 2 E3is entered.
Otherwise, execution terminates at lins 30.

FUNDAMENTAL COMMANDS

ON GOSUB

PURPOSE: Jumps to a specified subroutine in accordance with a specified branch-
ing condition.
FCRMAT: ON condition GOsSUB [branch [, [branch
Numeric expression destination] destination]]*
destination branch line number
e line number
Branch destination: program file name
string expression

EXAMPLE: ON A GOSUB 1000, 1100, 1200

PARAMETERS: 1. branch condition: Numeric expression truncated to an integer
2. line number: Integer in the range of 1 =line number=85535
3. program filename: String expression.

EXPLANATION:

1. The GOSUB statement is executed in accordance with the value of the expression used
for the branch condition. For example, execution jumps to the first branch destination speci-
fied when the value is 1, to the second destination when the value is 2, etc.

2. Program execution does not branch and execution proceeds to the next statement when
the value of the branch condition is less than 1, or if a branch destination corresponding
lo that value does not exist.

3. Up o 99 branch destinations may be specified.

4, Line numbers and program filenames cannot be mixed as branch destinations.

SEE: RETURN
SAMPLE PROGRAM: -

10 s1=0:82=0

20 FOR I=1 TO 100

30 ON (I MOD 2)+1 GOSUB 1000,1100
40 NEXT I

50 PRINT "S1=",;S1

60 PRINT "S52=",;82

70 END

1000 S1=S1+I:RETURN

1100 82=82+1:RETURN

S1 calculates sum of even numbers from 1 to 100, S2 calculates sum of
odd numbers from 1 to 100. :

35

36

PART 1 Ce-BASIC

IF ~THEN ~ ELSE/IF ~ GOTO ~ELSE

PURPOSE: Executes the THEN statement or GOTO statement when the specified con-

dition is met. The ELSE stalement is executed when the specified condi-
tion is not met.

FORMAT: condition THEN statement statement
IF N - [: statement] ELSE [: statement]
umeric st s
expression GOTOQ branch destination branch destination

destination branch line number

o line number
Branch destination: program filename

string expression

EXAMPLE; IF A=0 THEN 300 ELSE 400

IF K$="Y" THEN PRINT X ELSE PRINT Y

PARAMETERS: 1. branch condition: Numeric expression truncated to an integer

2. line number: Integer in the range of 1 <line number 65535
3. program filename: String expression.

EXPLANATION:

1.

2.

The statement following the THEN clause is executed, or execution jumps to the destina-
tion specified by the GOTO statement when the branch condition is met.

If the branch condition is not met, the statement following the ELSE statement is execut-
ed, or the program jumps to the specified branch destination. Execution proceeds to the
next program line when the ELSE statement is omitted.

- The format “JF A THEN ~ " results in the condition being met when value of the expres-

sion (A) is not O (absolute value of A < 1 x 10~%%). The condition is not met when the
value of the expression is 0.

. IF statements can be nested {an IF statement may contain other IF statements). In this-

case, the THEN ~ ELSE statements are related by their proximity. The GOTO ~ ELSE

combinations have the same relationships.
IF ~ THEN IF THEN ~ ELSE IF ~ THEN ~ ELSE ~ EL?E ~
i_ l - x J H)])

N PRINT "GOOD!"ELSE 10

,-\
o B V'e)
”~

[Ty
o
~

3

¥

[

o

"GOOD" displayed for input values from 1 10 9. Re-input is requested
for other values. ' :

FUNDAMENTAL COMMANDS

FOR ~ NEXT

PURPOSE:

FORMAT:

EXAMPLE:

PARAMETERS:

EXPLANATION:

Executes the program lines between the FOR statement and NEXT state-
ment and increments the control variable, starting with the initial value.
Execution is terminated when value of the control variable exceeds the
specified final value.
FOR control variable name =initial value

Numeric expression

TO final value [STEP increment |
* Numeric expression Numeric expression
NEXT {Control variable name] [, Control variable name]*

FORI=1 TO 10 STEP 0.1

!

NEXT |

1 .control variable name: Array variables cannot be used.
2. initial value: Numeric expression

3. final value: Numeric expression

4. increment: Numeric expression (default value = 1)

1. None of the statements between FOR and NEXT are executed and the program proceeds
to the next executable statement after NEXT when the initial value is greater than the fi-

nal value,

2. Each FOR requires a corresponding NEXT.

3. FOR ~ NEXT locps can be nested (a FOR ~ NEXT loop can be placed inside another FOR
~ NEXT loop). Nested loops must be structured as shown below with NEXT appearing
in reverse sequence of the FOR (e.g. FOR A, FOR B, FOR C~ NEXT C, NEXT B, NEXT A).

10 FOR I=1 TO 12 STEP 3

30 PRINT I, J

[20 FOR J=1 TO 4 STEP 0.5

40 NEXT J
50 NEXT |
60 END

4. Up to 255 FOR ~ NEXT loops may be nested (subject to memory capacity limitations). "
S. The control variable may be omitted from NEXT. However, use of the control variable in
the NEXT statement is recommended when using nested loops.

37

38

PART 1 Ci-BASIC

6. NEXT statements can be chained by including them under one NEXT statement, separat-
ed by commas.

10 FOR I=1 TO 12 STEP 3 10 FOR I=1 TO 12 STEP 3
20 FOR J=1 TO 4 STEP (.5 20 FOR J=1 TC 4 ZTEP 0.3
[30 PRINT I,J 30 FRINT I,J

40 NEXT J 40 NEXT J.1I

50 NEXT I 50 END

60 END

7. The contro} variable retains the value which exceeds the final value (and terminates the
loop} when loop execution is complete. With the loop FOR | = 3 TO 10 STEP 3, for exam-
ple, the value of control variable | is 12 when execution of the loop is complete,

8. Jumping out of a FOR ~ NEXT loop is also possible. In this case, the current control varia-
ble value is retained in memory, and the loop can be resumed by returning with a GOTO
statement.

REM(’)

PURPOSE: Allows remarks or comments to be included within a program. This com-
mand is not executed.
FORMAT: { REM]
comments
String expression
EXAMPLE: - REM or

PARAMETERS: comments: String expression

EXPLANATION:

1. Including an apostrophe or REM statement following the line number indicates that the
following text is comments and should be ignored in program execution.

2. The apostrophe may be included at the end of any executable statement to indicate that
the following text is comments. The REM statement can only be used at the beginning
of a line.

3. Any command foliowing the REM statement is ireated as a2 comment and is not executed.

PRINT A: REM 123 OK
C;r'nments
FRINT A REM 123 error
PRINT A’ 123 OK
Comments
4. An apostrophe is entered by pressing the (=] key whiie holding down the &7 key.

SAMPLE PROGRAM:

FUNDAMENTAL COMMANDS

LET

PURPOSE: Assigns the value of an expression on the right side of an equation to the
variable on the left side.

FORMAT: [LET] numeric variable name = Numeric expression
[LET] string variable name = String expression

EXAMPLE: LET A = 15
LET K§ = ''123"

EXPLANATION:
1. Assigns the value of an expression on the right side of an equation to the variable on the

left side.

2. Numeric expressions can only be assigned to numeric variables, and string expressions
can only be assigned to string variables. A TM error is generated when an attempt is made
to assign a string expression 1o a numeric variable, and vice versa.

3. LET may be omitted.

SAMPLE PROGRAM:

10 LET A=10
20 B=20
30 PRINT A;B

39

40

PART 1 C.-BASIC

DATA

PURPOSE:

FORMAT:

EXAMPLE:

PARAMETERS:

EXPLANATION:

Holds data for reading by the READ statement.
DATA [data] [, [data]]*
Constant Constant

DATA 10, 5, 8, 3
DATA CAT, DOG, LION

1. data: String constants or numeric constants

2. string constants: Quotation marks are not required unless the string
contains a comma which is part of the data. A null data string (length
0) is assumed when data is omitted from this statement.

1. This statement can be used anywhere in the program to hold data to be read by the READ

commang.
2. Mulliple data items are separated by commas.

SEE:

READ, RESTORE

SAMPLE PROGRAM:

10
20
30
40
50
&0

READ A$

RESTORE 50

READ B$

PRINT A$+" "+R$
DATA AD 199%0,NO USE
DATA ABCDEF

<.

FUNDAMENTAL COMMANDS

READ

PURPOSE: Reads the contents of the DATA statement into memory.
FORMAT: READ Variable name [Variable name]
EXAMPLE: READ A, B

READ C§, X, Y

PARAMETERS: Variable name

EXPLANATION:

1. Assigns the data contained in a DATA statement to the variables on a one-by-one basis.

2. Numeric data can only be assigned to humeric variables, and string data can only be as-
signed to string variables. A TM error is generated when an attempt is made to assign

string data to a numeric variable, and vice versa.
3. The data in DATA statements is read from the lowest line number in ascending order.

Data are read in order from the beginning of a DATA statement.

4. The first execution of the READ statement reads the first data item contained in the first
DATA statement. Subsequent executions read data items in sequential order.

5. The data line to be read can be specified using the RESTORE statement.

SEE: DATA, RESTORE
SAMPLE PROGRAM:

10 READ X
20 IF X<>0 THEN PRINT X;:GOTC 10
30 END

100 DATA 1,2
110 DATA 9,8,
120 DATA 8

f3,475’
7,6.5,

B ON

. 7,8,8
,3,2,1

’

41

42

PART 1 C.-BASIC

RESTORE

PURPOSE: Specifies a DATA line for reading by the READ statement.

FORMAT:

[line number]

RESTORE (Numeric expression)

EXAMPLES: RESTORE

RESTORE 1000
RESTORE (10% 10)
Lt tine 100

PARAMETERS: line number: Integer in the range of 1 < line number = B5535
EXPLANATION:'

1.

2,

The first DATA line in the program file containing the READ statement is the defauit op-
tion when the line number is omitted.

When a line number is specified, the first data item in the specified DATA line is read
by the next READ statement execution. A UL error is generated when the specified line

- A numeric expression can be used for line number specification. In this case, the numeric

expression must be enclosed in parentheses.

SEE: " READ, DATA

SAMPLE PROGRAM:

10 READ X
20 IF X<>0 THEN PRINT X;:GOTO 10
30 RESTORE 110

40 READ X

50 IF X<>0 THEN PRINT X;:G0T0 40
60 END

100 DATA 1,2,3,4,5,6,7,8,9

110 DATA 9,8,7,6,5,4,3,2,1

120 paTa ¢

FUNDAMENTAL COMMANDS

PRINT

PURPOSE: Displays data on the screen.
FORMAT: PRINT [output data]]’ houtput data]®
’
Output data: TAB (Numeric expression), REV, NORM,
numeric expression, string array
EXAMPLE: PRINT "AD1890"

PRINT REV; “ABCDE"”

PARAMETERS: output data: Output control function, numeric expression, or string ex-

pression

EXPLANATION:

1.

2.

Output of a numeric or string expression displays the value or string on the screen. Con-
trol function output results in the operation determined by the function being performed.
Numeric expressions are displayed in decimal notation with values longer than 10 digits
being displayed using a mantissa rounded off to 10 digits, plus a 2-digit exponent.

a) Integers: Values less than 1 x 10"

b) Fraction: Decimal fractions smaller than 10 digits

¢) Exponent: Other values

A space is added after displayed numeric expressions, with negative expressions preceded
by a minus sign, and positive expressions preceded by a space. Expressions are displayed
as integers, fractions, or exponential expressions, with the display format automatically
selected according to the value of the expression.

. String expressions are displayed unchanged. There are, however, special operations for

internal codes 00r ~ 1FH, 7FH (see CHARACTER CODE TABLE on page 196). Internal
codes FO+~FFu gan be used to freely specify the shape of characters using the
DEFCHRS statement.

. Output is displayed on the screen from the current position of the cursor to the right. A

line feed results when the cursor reaches the last column on the last line of the screen
(lower right), scrolling the entire screen upwards. Subsequent output is displayed from
the beginning of the bottom line of the screen (lower lefi).

. Separating expressions with commas causes each output to be followed by a line change.
. Separating expressions with semicolons causes each output to be displayed immediately

following the previous output.

. Including a semicolon at the end of this statement causes the cursor to remain at position

immediately following the displayed output.

SEE: TAB, REV, NORM
SAMPLE PROGRAM:

10 PRINT "PRINT DISPLAYS MESSAGES"
20 PRINT "ON THE SCREEN"

43

44

PART 1 Cu-BASIC

TAB 7

PURPOSE: Qutputs a horizontal tab Specification to the screen or printer.
FORMAT: TAB (tab specification)

Numeric expression
EXAMPLE: PRINT TAB (5) ; “ABC”

PARAMETERS: tab specification: Numeric expression truncated to an integer in the range
of 0 = tab specification < 256,

EXPLANATION:

1. Used in the PRINT, LPRINT, and PRINT statements to specify a display position on
a lire. Spaces are inserted from the left end of the line to the specified positicn.

2. The display position is determined by counting from the left end of the line (position 0
and) to the right, up to the specified value.

3. Atab specification vaiue in an LPRINT statement which is less than the current printhead
position causes the tabulation to performed following a carrier return/line feed.

SEE: PRINT, LPRINT, PRINT #
SAMPLE PROGRAM:

10 FOR I=0 TO 25

20 PRINT TAB(I);"ARCDEFG"
30 FOR J=0 TO 25 : NEXT J
40 NEXT I

FUNDAMENTAL COMMANDS

E%EV

PURPOSE: Displays characiers in reverse field.

FORMAT: PRINT REV {} [Output]

1 L]

EXPLANATION:
1. Used in a PRINT statement to display characters in reverse field.

2. REV can be canceled using the NORM function.
3. Changing modes using the &0 or @8 keys cancels the REV specification.

SEE: NORM, PRINT
SAMPLE PROGRAM:

10 PRINT REV; "CHARACTERS ARE REVERSED"

NORM

PURPOSE: Cancels the REV specification.

FORMAT: PRINT NORM {; } [Output]
EXAMPLE: 'PRINT NORM

EXPLANATION:.
Used in a PRINT statement to cancel the REV specification.

SEE: REV

SAMPLE PROGRAM:
10 PRINT "aD 13830"
20 PRINT REV; "ABCDEF"
30 PRINT NORM; "ABCDEF"
40 FOR I=0 TC 500:NEXT I

50 END
Reverse field mode is specified at line 20 and continues until canceled

in line 30.

45

46

PART 1 Cu-BASIC

PRINT USING

PURPOSE: Displays output in a specified format.
FORMAT:
PRINT USING “‘format specification” , output H f JI output

String expression String expression String expression
Or numeric expression of numeric expression

EXAMPLE: PRINT USING “& . & ;A%
PRINT USING "'z 2t # .52 #" i X

PARAMETERS: 1. format specification: String expression
2. output: Numeric expression or string expression

EXPLANATION:

1. Displays output in a specified format. The format can be expressed using a combination
of the following characters.
a) String formats

L, Only first character displayed.

& &...... ..Number of characters displayed equals the number of spaces from &
to & (inclusive). When output is longer than the specified length, the
string is displayed from the beginning and truncated at the specified
length. When output is shorter than the length specified, the whole string
is displayed, and spaces are inserted up to the specified length.

@ oo Output displayed without change.
b} Numeric value formats
B, Number of digits. Numeric values are right-justified.
............... x........Decimal point position.-“0” is output when the value has no fractional
part,
Jorteriemrereniin Used with “# " to separate integer part of value into 3-digit segments.
ANANAveriaannn, Used at end of expression to indicate exponent.

2. Including characters other than those noted above in the format specification causes those
characters to be output as they are written.

3. Numeric data can only be formatted using numeric formats, and string data can only be
formatted using string formats. A TM error is generated when an attermnpt is made to for-
mat string data using a numeric format, and vice versa.

4. When the value of a numeric expression is longer than the number of digits specified by
the format, the number is rounded and displayed. A percent sign is displayed in front of
the number when the output value is longer than the specified format.

5. Multipie formats can be written in the format specification with the formats separated by
a character that does not appear in the format.

6. When the number of outputs exceeds the number of formats, the formats are applied in
sequence from the first to the last. The sequence then returns to the first format.

FUNDAMENTAL COMMANDS

7 A line feed is performed at the end of the display unless a semicoion is included al the
end of this statement.

8. When * A "' is used (for exponential display). commas separating the integer into 3-digit
segments are ignored, and one space is provided before the numeric value to indicate
the sign of the number.

SEE: PRINT, LPRINT, LPRINT USING

SAMPLE PROGRAM:
10 A$___rrrr
20 FOR I=1 TO 10
30 A$=A$+CHR$(I+64;

40 PRINT USING "& &" ;RS
50 FOR T=1 TO 100:NEXT T
60 NEXT I°

LOCATE

PURPOSE: Moves the cursor to a specified position on the virtual screen.
FORMAT: LOCATE X-coordinate, Y-coordinate
Numeric expression Numeric expression
EXAMPLE: LOCATE 10, O
PARAMETERS: 1. X-coordinate: Numeric expression truncated to an integer in the

~ range of 0 = X-coordinate < 32
- 2. Y-coordinate: Numeric expression truncated to an integer in the
range of 0 =< Y-coordinate < 8

EXPLANATION:

1. Locates the cursor at a specified position on the virtual screen.

2. The origin of the coordinates is the upper left corner of the screen (0, 0). The X coor-
dinate value is incremented for each character position to the right. The Y value coor-
dinate is incremented form each line down.

0, 09— o] oy —(@1L0

0, 71— o o| —(@1,7

SAMPLE PROGRAM:

10 CLs

20 LOCATE 0,0
30 PRINT TIMES$
40 GOTC 20

47

48

PART 1 Ca-BASIC

CLS

PURPOSE:; Ciears the display screen.
EXAMPLE: CLS

EXPLANATION:
The screen is cleared and the cursor is located at the home position. Pressing the kwsj key

or executing PRINT CHR$(12) ; produces the same resuit.
SAMPLE PROGRAM:

10 REM CLEAR SCREEN
20 CLS

FUNDAMENTAL COMMANDS

FDEFCHR$

PURPOSE: Defines character patterns for display.
FORMAT: DEFCHRS (code) = characler pattern
‘ Numeric expression String expression
EXAMPLE: DEFCHR$(240) ='04061C1COEOE™
P+ METERS: 1+ code: Numeric expression truncaled to an integer in the range of

240 < code < 256 (internal character code)

2. character pattern: String expression 12 characters long, consisting
of the characters 0~9 and A~F

EXPLANATION:

1. Character patterns are defined by DEFCHR$ using internal codes in the range of 240
(&HF0} ~ 255(&HFF).

2. Character patterns are defined using string expressions of hexadecimal values that

represent dot patterns.
3. Display characters are formed using an 8 x 6 dot pattern, divided into 12 segments, each
consisting of four dots (Fig. 1). The display status of each segment is controlled using

hexadecimal values, as shown below:
The following procedure would result in a character pattern such as the one illustrated

in Fig. 2.
a) Determine the values to be assigned to each segment:

§=OE:1§=2ﬁ=3§=4E 5H=6f=75=87=9
§=AQ=B§=CE=D!=E|=F

Fig. 1= =
o|@E|T|@|a
B dots
RO EOR SO RERE
& dots —

b) Arrange the values in order from pattern 1 through pattern 12.
81FF8181FF81

c) Assign the pattern to a character code (here to code 240, or &HFO).
DEFCHRS (&HF0) = "81FFB181FF81"

G) The character pattern can be displayed using the CHRS statement.

PRINT CHR$(&HFO0)E3

49

50

PART 1 Cu-BASIC

SEE: CHARACTER CODE TABLE
SAMPLE PROGRAM:

10 ag=""

20 FOR I=1 TO 12

30 READ D:D$=CHR$(D):A$=A$+DS
40 NEXT I

50 DEFCHR$(240)=A%

6C PRINT CHR$(240)

70 DATA &HF,8HF,&HS8,&H1,&H8, &H1
80 DATA &HB,&H1,6HS8,8H1,&HF, &HF

Displays ‘a frame. Changing values in lines 70~ 80 produces other
patterns,

BEEP

PURPOSE: Sounds the buzzer and controls key input signal.
FORMAT: BEEP o0
1
ON
. OFF
EXAMPLE: ~ BEEP 1, BEEP ON
EXPLANATION:

1. A low tone is specified by BEEP or BEEP 0.

2. A high tone is specified by BEEP 1.

3. A tone sounds each time a key is pressed when BEEP s ON.
4. BEEP OFF switches the key tone OFF.

o. Numeric expressions can be used in place of 0 and 1.

SAMPLE PROGRAM:
10 BEEP 1:BEEP 0:BEEP (:3ZEP §

FUNDAMENTAL COMMANDS

INPUT

PURPOSE: Assigns keyboard data input to a variable.

FORMAT: INPUT ["message”{ ;](] variable [.[“message"-{ ;}] variabie
‘) .

EXAMPLE: INPUT “YEAR=", Y, "MONTH=", M, "DAY=", D

PARAMETERS: 1. message: Characler string beginning with a string constant.

E

oW

9.

2. variable name: Numeric variable name or string variable name.

XPLANATION:
. Data can be input to the specified variable from the keyboard.

1
2.

Messages included in the INPUT statement are displayed. A question mark is displayed
following the message when a semicolon is included following the message specification.

. A question mark only is displayed when a message is not specified.
. The B3 key must be pressed foliowing each data input.
. Numeric expressions can only be assigned to numeric variables, and string expressions

can only be assigned to string variables. A TM error is generated when an attempt is made
to assign a string expression to a numeric variable.

. Quotation marks are not used when entering string data. Enclosing a string in gquotation

marks causes the quotation marks to be stored as part of the string.

. Pressing the BB key without entering data inputs a string of iength 0 for a string variable,

while a numeric variable retains its current value.

. Generally, the logical line immediately following the message is input. The cursor can,

however, be moved to any position on the virtual screen (using the cursor keys), and all
data from the current cursor position to the end of the current logical line are input when

@&is pressed. - -
The B key, {5 key, and the touch-keys do not function during execution of the INPUT

statement.

10.Numeric expressions may be used for numeric value input.
11.Pressing the [key or changing modes during execution of the INPUT statement ter-

minates program execution.

SAMPLE PROGRAM:

INPUT"INPUT STRING";S$

PRINTVCS="-

=
g I

3 O O

3 By

=T
Jaipy)

Displays string entry.

51

52

PART 1 Cu-BASIC

INKEYS

PURPOSE: Assigns a single character input from the keyboard to a variable.
EXAMPLE: A% = INKEYS

EXPLANATION:

1. Returns the character or performs the function corresponding to the key pressed during
execution of this statement. A null string is returned if a key is not pressed.

2. The following operations are performed when the keys listed below are pressed during
execution of INKEYS$.
BRK: Terminates program execution.
STOP: Suspends program execution.
LCKEY, MENU, CAL, MEMO, MEMO IN, IN, QUT,
CALC, ANS, ENG, CAPS, SHIFT + one-key commands, :l Return a null string.
F + one-key functions, CONTRAST, NEW ALL

3. The cursor is not displayed during data input stand by, and input characters are not dis-
played. Control codes (001 ~ IFk) can be input, but the corresponding operations will not
be performed.

4. The touch-keys can be used during program execution and are read by INKEY$. The fol-
lowing iliustration shows the character codes (&HFO ~ &HFF) that correspond to the
touch-keys.

FO Ft F2 F3
Fa4 F5 F6 F7
X F8 F9 FA FB
FC FD FE FF

See page 8 for more information concerning the touch-keys.
SEE: INPUTS
SAMPLE PROGRAM:

10 PRINT"PRESS ANY XEY"

20 C$=INKEYS

30 IF C$="" THEN 20

40 PRINT"YOU PRESS ";C%:"XEY"
50 END

Displays character corresponding to key input.

FUNDAMENTAL COMMANDS

INPUTS

PURPOSE: Assigns a specified number of characters from the keyboard to a
variable.
FORMAT: INPUTS$ (number of characters)
Numeric expression
EXAMPLE: A$ = INPUTS (3)
PARAMETERS: number of characters: Numeric expression truncated to an integer in

the range of 0 = number of characters < 256

EXPLANATION:
1. A string of the length specified by the number of characters is read from the keyboard

buffer, Execution waits for the keyboard input when the buffer is empty,

2. The following operations are performed when the keys listed below are pressed during
exacution of INPUTS.
BRK: Halts program execution.
LCKEY, MEMO, IN, OUT, ENG, ANS
SHIFT + one-key commands, Return a null string
F + one-key functions, CAPS

3. The cursor is not displayed during data input stand by, and input characters are not dis-
played. Control codes (&H00 ~ &H1F) can be input, but the corresponding operations will
not be performed.

SEE: INKEY$
SAMPLE PROGRAM:

10 PRINT "ENTER SECRET CODE"
20 ID$=INPUT$ (4)

30 IF ID$<>"S876" THEN 10

40 PRINT "OK"

53

54

PART 1 Cai-BASIC

DIM |

PURPOSE: Declares an array.
FORMAT:
DIM array name (subscript maximum value |, subscript maximum valuej*)
Numeric expression Numeric expression
[, array name (subscript maximum value [. subscript maximum valuel™)]
Numeric expression Numeric expression
EXAMPLE: DIM Ag(10), B$(10), X(2,2,2)

PARAMETERS: 1. Array name: Variable name
2. subscript maximum value: Numeric expression truncated to an
integer

EXPLANATION:

1. Declares an array of the dimensions determined by the number of subscript maximum
values. The size of the array is determined by each subscript maximum value.

2. Array elements range from 0 through the specified subscript maximum value.

3. All elements of a newly declared array are set to their initial value. For numeric arrays,
the initial value is 0, while string arrays assigned null strings (fength 0).

4. The size of an array is limited by available memory capacity. Declaration by the DIM state-
ment is subjected to the limitations specified for iogical lines (255 characters).

5. Declaring identical (same array name, same subscript maximum value) in the same pro-
gram causes second declaration to be disregarded. Declaring two arrays with identical
names and different subscript maximum values resuits in a DD error,

6. An array variable cannot be used unless they are first declared in a DIM statement.

SEE: - ERASE
SAMPLE PROGRAM:

10 DIM A$(5)

20 FOR I=65 TO 70
30 A$(I-65)=CZR$(I)
40 PRINT A$(I-565);
50 NEXT I

FUNDAMENTAL COMMANDS

ERASE

PURPOSE: Erases a specified array.

FORMAT: ERASE [array name [, array name]*]
EXAMPLE: ERASE AS, X

PARAMETERS: array name: Variable name

EXPLANATION:

1. Erases the specified array from memory.

2. An error does not result when the specified array does not exist, and the program pro-
ceeds to the next executable statement.

3. The ERASE statement cannot be used in a FOR ~ NEXT loop.

4. To declare an array using an name already assigned to an existing array, first erase the
existing array with the ERASE statement.

SEE: Dim
SAMPLE PROGRAM:

10 CLEAR

20 DIM AS$(10),88(10)
30 ERASE A%

40 VARLIST

55

56

PART 1 Ca-BASIC

CALL

PURPOSE: Calls a machine language subroutine.
FORMAT; address
Numeric expression
CALL “machine language filename”
String expression

EXAMPLE: CALL 100
CALL "TEST"

PARAMETERS: 1. address: direct specification of memory (RAM) address
2. machine language filename: machine language file stored in RAM

EXPLANATION:

1. Calls a machine language subroutine stored in RAM.

2, Specifying a machine language filename moves the machine language file to the execu-
tion start address of the machine language area, followed by execution of the file. An er-
ror is generated if the size of the machine language area (reserved using the CLEAR
statement} is insufficient.

3. Execution is returned to BASIC or the CAL mode by the assembler RTN command.

SEE: CLEAR, MON

PEEK

PURPOSE: Returns the value stored at the specified memory address.
FORMAT: PEEK (address)

Numeric expression
EXAMPLE: PEEK (&H100)

PARAMETERS: address: Numeric expression truncated to an integer in the range of
—32769 < address < 65536. Negative addresses are added to 65536
and the contents of the resulting address are returned (i.e. PEEK (- 1)
is identical to PEEK (65535)).

EXPLANATION:
Returns the value stored in memory at the specified address,

SEE: - POKE
SAMPLE PROGRAM: T

10 FOR I=&H7000 TO &H7100
20 PRINT EEX$ (PEEK(I));" "
" 30 NEXT I

Prints memory contents from &H7000 to &H7100 in hexadecimal,

FUNDAMENTAL COMMANDS

POKE

PURPOSE:
FORMAT:

EXAMPLE:
PARAMETERS:

EXPLANATION:

Writes data to a specified address.
POKE address, data

Numeric Numeric
expression expression

POKE &H7000, O

1.

address: Numeric expression truncated to an integer in the range of
— 32769 < address < 65536. Negative addresses are added to 65536
and data are written to the resulting address (i.e. POKE —1,is identi-
cal to POKE 65535, data).

. data: Numeric expression truncated to an integer in the range of

0 = data < 256

1. Writes data to the specified address in memory.
2. Runaway execution may result if the contents of an address outside the user work area

is altered using the POKE statement.
PEEK
SAMPLE PROGRAM:
10 CLEAR,10
20 FOR I=&H7000 TO &H7010
30 PCKE I,0

SEE:

40 NEXT I
50 END

.~

Clears (assigns zeros) memory from 7000+ to 7010H.

57

58

PART 1 Cau-BASIC

DRAW
DRAWC

PURPOSE: Draws and deletes a point or a line on the screen.
FORMAT: DRAW .
{DRAWC} ["] (Xv‘Y') [- (X- Y)]
Origin Endpoint

EXAMPLE: DRAW (50, 0) - (80, 30) — (20, 30) — (50,0)
DRAW - (50, 30)

PARAMETERS: 1 X: Numeric expression in the range 0 = X < 192
2. Y: Numeric expression in the range 0 = Y < 64

EXPLANATION:

1. Including * =" in front of (X, Y), draws a line from the last graphic pointer to the point
specified by (X, Y). i “="is not included in front of (X, Y), a point is drawn at (X, V).
Figures can be drawn by chaining multiple lines.

2. The DRAWC statement erases a line. .

3. The graphic pointer is moved to the last endpoint specified.

NOTE: The graphic pointer stores the coordinates of the last point drawn using the DRAW

statement.

SAMPLE PROGRAM

10 CLS

20 DRAW(0,16)-(191,16)

30 DRAW(0,0)-(0,31)

40 ANGLE- 0

50 PRINT"SIN,COS"

60 FOR I=0 TQ 191

70 DRAW(I,SIN(I80+I%4)%15+16)
80 DRAW(I,COS(180+I%4)%15+16)
90 NEXT I

FUNDAMENTAL COMMANDS

POINT

PURPOSE: Checks whether a dot on the virtual screen is lit.
FORMAT: POINT (X-coordinate, Y-coordinate)

Numeric expression Numeric expression
EXAMPLE: IF POINT {10,20) = 1 THEN 30

PARAMETERS: 1. X-coordinate: Numeric expression truncated integer in the range of
0 = X-coordinate < 192
2. Y-coordinate: Numeric expression truncated integer in the range of 0
= Y-coordinate < 64
EXPLANATION:
1. A value of 1 is returned when the dot at the specified virtual screen location is lit, while
value of 0 is returned when the dot is not lit.
2. The origin (0, 0) of the virtual screen is its upper left corner, while the lower right corner
coordinates are (191, 63).

0,0 (191, 0)

{0, 63 (181, 63)

SAMPLE PROGRAM:

10 INPUT"X= TO 191":X

20 INPUT"Y= TD 13":Y

30 IF POINT(X,Y) THEN PRINT"TRUE":END
40 PRINT"FALL":END

"TRUE" displayed if dot is lit, and "FALL”" displayed if not lit at specified
coordinates.) :

59

60

PART 1 Cu-BASIC

ON ERROR GOTO

PURPOSE: Specifies the line number to which execution branches when an error is
generated,
FORMAT: ON ERROR GOTO branch destination line number
Line number
EXAMPLE: ON ERROR GOTO 1000

PARAMETERS: branch destination line number:

Integer in the range of 0 < line number = 65535

EXPLANATION: *

1.

7.-

8.
SEE: ERR, ERL, RESUME

Specifies the line number to which program execution branches when an error is generat-
ed. The program returns to normal operations when a RESUME statement is executed
after the error handling routine (starting at the specified line number) is executed,

- An error is generated and program execution is halted when the branch destination line

number is 0,

. An error generated after execution branches to the specified line number causes an error

messege to be displayed and program execution to be halted.

. An ON ERROR GOTO statement must be followed by a corresponding RESUME state-

ment in the same program file. Branching to another program file using ON ERROR GOTQ
generates an error when the RESUME statement in the other program area is executed.

. An OM error is generated when program execution is terminated while files are open (be-

cause of insufficient memory capacity), but error branching will not be performed.

. The 256 characters in the IO buffer are discarded when an OM error occurs while

attempting to write to a file using the PRINT # statement.

Generation of an LB error while ON ERROR GOTO is specified cuts off the i/O buffer
and FDD commands become inoperative.

The operations outlined are limited to BASIC program execution.

SAMPLE PROGRAM:

10 ON ERROR GOTO 40

20 **ERRORx*x*

30 END

40 PRINT"QOPS! ERRQOR!!!" : BEEP 1
50 RESUME 30

e e e i e vyt

,r:;}‘_,, Can

|
f
b

BRI RO

/ma“'“ﬂ%‘ﬂ?ﬁfﬂmw?-‘?".'ﬁ-s#e'g',.'lw‘mw.I.b:la:-.;.m:-«. B L -

FUNDAMENTAL COMMANDS

RESUME

PURPOSE:
FORMAT:

EXAMPLE:

Returns from an error handling routine to the main routine.

NEXT
RESUME return line number
Line number

RESUME NEXT
RESUME 100

PARAMETERS: 1. NEXT

2. return line number: Integer in the range of 1 = line number = 65535

EXPLANATION:

1. This statement is entered at the end of an error handling routine.

2. The statement that generated the original error is the default option when the return desti-
nation (NEXT or return line number) is omitted.

3. Program execution returns to the statement following the statement that generated the
original error when NEXT is specified.)

4. Return line number specifies the line to which program execution is to be resumed.

5. A RESUME statement without a return destination or a RESUME statement that specifies
the line in which the original error was generated as the return line number cannot be
written at the beginning of the error handling routine. This would result in an endless loop
between the statement in which the error was generated and the error handling routine.

6. A RESUME statement must always be included in the same file area as the ON ERROR

GOTO staterment.

SEE:

ERR, ERL, ON ERROR GOTO

SAMPLE PROGRAM!

10 ON ERROR GOTO 1000

20 INPUT A

30 D=1/A

40 PRINT "1/";A;"=":D

50 GOTOD 20

J1000 PRINT "0 IS ILLEGAL"

1010

RESUME 20

Calculates reciprocals of input values and returns to line 20 if a O is en-
tered (resulting in division by 0).

61

62

PART 1 Car-BASIC

ERL]

PURPOSE: Returns the number of a line in which an error has been generated.
FORMAT: ER - ERL
EXPLANATION:

The value of ERL can only be changed within a program, and the value is cleared when
a program is executed or when the power of the unit is switched OFF.

SEE; ERR, ON ERROR GOTO

SAMPLE PROGRAM

10 ON ERROR GOTO 40

20 **ERROR*%

30 END

40 PRINT"ERROR LINE=":ERL
50 RESUME 30

Error is generated in line 20 and corresponding error code is displayed
in line 40.

ERR

PURPOSE: Returns the error code which corresponds to a generated error.
FORMAT: - PRINT ERR

EXPLANATION:

The value of ERR can only be changed within a program, and the value is cleared when
a program is executed or when the power of the unit is switched ON. See the error message
table on page 197 for detaiis concerning error codes and therr Gorresponding error messages.
SEE: ON ERROR GOTO, ERL, Error Message Table

SAMPLE PROGRAM:

10 ON ERROR GOTO 40

20 **ERRORxx

30 END

.40 PRINT"ERRQOR CODE=";ERR
- 50 RESUME 30

An error is generated in line 20 and the corresponding error code is dis-
played in line 40.

i s ——— —— e 11

WUMERIC FUNCTIONS

NUMERIC FUNCTIONS =~ -

ANGLE

PURPOSE:
FORMAT:

EXAMPLE:

PARAMETERS:

EXPLANATION:

Specifies the angle uni.
ANGLE angle specification

Numeric expression
ANGLE 0O

angle specification; Numeric expression truncated to an integer in the
range of 0 = angle specification < 3.

1. The angie units for the trigonometric function can be specified using the values 0, 1, and 2.
0: DEG (degrees)
1: RAD (radians)
2: GRAD (grads)

2. The relationships between the angle units are as follows:

Angle Unit DEG RAD GRAD 90° =— rad = 100 grad
2
- 100
1DEG = ! 80 El
1RAD = & 1 20
. ki 7
T80 x
1GRAD ~ 100 200 ‘

10 ANGLE
20 PRINT
30 ANGLE
40 PRINT
50 ANGLE
60 PRINT

3. ANGLE 0 is set automatically when NEW ALL is executed.
SAMPLE PROGRAM

0 'DEGREE
SIN 30;
1 'RADIAN
SIN(PI/S);
2 'GRAD
SIN(100/3)

€3

64

PART 1 Ce-BASIC

SIN
COS
TAN

PURPOSE: Returns the value of the corresponding trigonometric function value for
the argument.
FORMAT: SIN {(argument)

Numeric expression

Cos (argument)
Numeric expression

TAN (argument)
Numeric expression

* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.

EXAMPLE: SIN (30}, COS (PI/2)

PARAMETERS: argument: Numeric expression (angle)
largument|< 1440 (DEG)
largument|< 8x (RAD)
fargument{ < 1600 (GRAD)
EXPLANATION: '
Returns the value of the corresponding trigonometric function for the argument,
SIN SINE
COS COSINE
TAN TANGENT

SEE: ANGLE, ASN, ACS, ATN
SAMPLE PROGRAM:

10 ANGLE 0

20 INPUT "DEGREE=",D

30 PRINT"SIN(";D;")=":SIN D
40 PRINT"COS(";D;")=";COS D
50 PRINT"TAN(";D;")=";TAN D
60 GOTO 290

Displays trigonometric function values for input angles.

NUMERIC FUNCTIONS

ASN
ACS
ATN

PURPOSE: Returns the value of the corresponding inverse trigonometric function for
the argument.
FORMAT: ASN {argument)

Numeric expression

ACS (argument)
Numeric expression

ATN {argument)
Numeric expression

* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.

EXAMPLE: ASN (0.1)

PARAMETERS: argument: Numeric expression in the range of -1 = argument = 1
(ASN, ACS)

EXPLANATION:

1. Returns the value of the corresponding inverse trigonometric function for the argument.
ASN ARCSINE
ACS ARCCOSINE
ATN ARCTANGENT

2. Function values are returned within the following ranges:
—90° =ASN (x) = 90°, 0°=< ACS (x) = 180°
—-90° = ATN (x) = 80°

SEE: ANGLE, SIN, COS, TAN
SAMPLE PROGRAM:

10 ANGLE 1

20 INPUT"INPUT NUMBER(-1 TO 1)":N
30 PRINT N;"=SIN(";ASN(N); "RAD}"
40 PRINT N;"=COS(";ACS(N):"RAD)"
50 PRINT N;"=TAN(";ATN(N);"RAD)"
60 -FOR I=0 TO S500:NEXT I

70 ANGLE 0:END

Displays trigonometric angles in radians for each input in range of ~ 110 1.

€5

66

PART 1 Ca-BASIC

HYP SIN
HYP COS
HYP TAN

PURPOSE: Returns the value of the corresponding hyperbolic function for the ar-
gument.
FORMAT: HYP SIN {argument)

Numeric expression
HYP COS {argument)

Numeric expression
HYP TAN (argument)

Numeric expression

* The parentheses enclosing the argument can be omitted when the
argument is a humeric value or variable.

EXAMPLE: HYP SIN (1.5)

PARAMETERS: argument: Numeric expression
HYP SIN |argument| = 230.2585092
HYP COS largument!= 230.2585092

EXPLANATION:
Returns the value of the corresponding hyperbolic function for the argument.

HYP SIN (x) ! sinhz =(e'—¢7)/2
HYP COS(x) [coshz=(e"+e7)/2
HYP TAN(zx) :tanhz =(e'—e*)/(e"+e’)

SEE: HYP ASN, HYP ACS, HYP ATN
SAMPLE PROGRAM:

10 INPUT"INPUT NUMBER{UP TO 230)":N
20 PRINT"HSN(";N;")=";HYPSIN N
30 PRINT"HCS(";N;"}=";HYPCOS N
40 PRINT"HTN(";N;")=" HYPTAN N
50 FOR I=0 TO 500 : NEXT I
60 END

- Displays the hyperbolic functions for numeric input up to 230.

NUMERIC FUNCTIONS

HYP ASN
HYP ACS
HYP ATN

PURPOSE; Returns the value of the corresponding inverse hyperbolic function for the
argument.
FORMAT: HYP ASN (argument)
R Numeric expression
HYP ACS {argument)
Numeric expression
HYP ATN {argument}

Numeric expression

* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable,

EXAMPLE: HYP ASN (10)

PARAMETERS: argument: Numeric expression
: HYP ASN argument < 5x 10% (5E+99)
HYP ACS 1 = argument < 5x10% (5E+99)
HYP ATN —1 =< argument < 1

EXPLANATION:
Returns the value of the corresponding inverse hyperbolic function for the argument.

HYP ASN{x) ! sinh lz=logc(x+ %+ 1)
HYP ACS(x) :cosh™lx=loge(z+Vz?—1)

HYP ATN(x) Ztanh“]:r=‘:12*108’ ;ii

SEE: HYP SIN, HYP COS, HYP TAN
SAMPLE PROGRAM:

10 INPUT"INPUT NUMBER(1 OR GREATER}";N
20 PRINT"HAS(";N;")=";HYPASN N

30 PRINT"HAC(";N;")=";HYPACS N

40 END

Displays inverse hyperbolic function value for numeric input of 1 or greater.

67

€8

PART 1 Cu-BASIC

EXP

PURPOSE:; Returns the value of the exponential function for the argument.
FORMAT: EXP (argument)
Numeric expression

* The parentheses enclosing the argument can be omitled when the
argument is a numeric value or variable.

EXAMPLE: EXP (1)

PARAMETERS: argument: Numeric expression in the range of argument < 230.2585092

EXPLANATION:

Returns the value of the exponential function vaiue for the argument.
EXP (x) = &

SEE: LOG, LGT
SAMPLE PROGRAM:

10 INPUT "e”™X(UP TO 230)":N
20 PRINT "e™":N;"=":EXP N
30 END

Displays exponential function value for numeric input up to 230.

T r————r—r——— W T =

e e AR o oo oA T e e B

PP

L

T s

NUMERIC FUNCTIONS

LGT
LOG

PURPOSE: Returns the value of the corresponding logarithm function for the argument.

FORMAT: LGT (argument)
Numeric expression
LOG (argument)

Numeric expression

* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.

EXAMPLE: LGT (2), LOG (3)

PARAMETERS: argument: Numeric expression
LGT: 0 < argument
LOG: 0 < argument
EXPLANATION:
Returns the value of the corresponding logarithm function value for the argument.
LGT: Common logarithm iogrox, logx
LOG: Natural logarithm logex, Inx

SAMPLE PROGRAM:

19 INPUT"INPUT NUMBER":@N
20 PRINT"LGT";N;"=":LGT N
30 PRINT"LOG";N;"=";L0OG N
40 END o

Displays logarithm function values for numeric input greater than 0.

69

r——— mm s es e

70

PART 1 Ca-BASIC

SQR

PURPOSE: Returns the square root of the argument.

FORMAT: SQR (argument)
Numeric expression
* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.
EXAMPLE: SQR (4)
PARAMETERS: argument: Numeric expression in the range of 0 = argument
EXPLANATION:
Returns the square root of the argument.
SQR (x) : Vx
SAMPLE PROGRAM:

10 FOR I=0 TO 10

20 PRINT USING"SQR(H##)=H.HEH4HH#HH",;1;S0R I
30 FOR J=0 TO 250 :NEXT J

40 NEXT I

50 END

Displays square roots of values from 0 through 10.

ABS .

PURPOSE: Returns the absolute value of the argument.

FORMAT: ABS (argument)
Numeric expression
* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.
EXAMPLE: ABS (- 1.5)
PARAMETERS: argument: Numeric expression

EXPLANATION:
Returns the absolute value of the argument.
ABS (x) : | x|

ey e e gk,

e st
'

SAMPLE PROGRAM:

10 IKPUT"INPUT NUMBERS™:N

20 A=ABS N

30 PRINT N;"ABS()=";A

40 END

Displays the absolute value of an input value.

NUMERIC FUNCTIONS

SGN

Returns a value which corresponds to the sign of the argument.

* The parentheses enclosing the argument can be omitted when the

argument is a numeric value or variable.

PURPOSE:

FORMAT: SGN (argument)
Numeric expression

EXAMPLE: SGN (A)

PARAMETERS: argument: Numeric expression

EXPLANATION:

Returns a value of —1 when the argument is negative, 0 when the argument equals 0, and

1 when the argument Is positive.

TArgument (X) SGN (X}
X<0 -1
X=0 0
X>0

SAMPLE PROGRAM:

10 INPUT"INPUT NUMBER";N

20 5=SGN N

30 IF S TEEN PRINT
40 PRINT "ZERC":END

"NOT ZERD":END

Uses SGN function to determine whether or not an input value equals 0.

71

72

PART 1 Cu-BASIC

INT

PURPOSE: Returns the largest integer which does not exceed the value of the
argument.
FORMAT; INT {argument)

Numeric expression
* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.

EXAMPLE: INT (1.3)
PARAMETERS: .argument; Numeric expression

EXPLANATION:
1. Returns the largest integer which does not exceed the value of the argument.
2. INT (x) is equivalent to FIX (x) when x is positive, and FiX {x} — 1 when x is negative.

SEE: FIX, FRAC
SAMPLE PROGRAM:
10 FOR I=1 TO 10
20 N=RND(-1)%10
30 LPRINT"INT(";N;")=";INT N
40 NEXT I
50 END

Converts random values to integers and outputs results to printer.

e
e

BT

AR

e
bl
3
%
e
=

N ST S AP

B KT STEPEN

e

NUMERIC FUNCTIONS

FIX

P e RSB

PURPOSE: Returns the integer part of the argument.

FORMAT: FIX {argument)
Numeric expression
* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variable.

EXAMPLE: FIX (=1.5)

PARAMETERS: argument: Numeric expression
EXPLANATION: '

Returns the integer part of the argument.

SEE: INT

SAMPLE PROGRAM:
10 INPUT A
20 PRINT"FIX(":pa;"}=";FIX A
30 GOTOD 10

Displays the integer part of input values.

FRAC

PURPOSE: Returns the fractional part of the argument.

FORMAT: FRAC (argument)
Numeric expression
* The parentheses enclosing the argument can be omitted when the
argument is a numeric value or variabie.

EXAMPLE: FRAC (3.14)
PARAMETERS: argument: Numeric expression
EXPLANATION: '

1. Returns the fractional part of the argument.
2. The sign (=) of the value is the same as that for the argument.

SAMPLE PROGRAM:
10 ®0R I=1 TO 10
20 N=RND(-1)x*10
30 LPRINT"FRAC(";N;")=",FRAC N
40 NEXT I
5C END
Isolates fractional parts of random values and outputs results to printer. 73

74

PART 1 Cu-BASIC

ROUND

PURPOSE: Rounds the argument at the specified digit.
FORMAT: ROUND (argument, digit)
EXAMPLE: ROUND (A, -3)

PARAMETERS: 1. argument: Numeric expression
2. digit: Numeric expression truncated to an integer in the range of — 100
< digit < 100
EXPLANATION:
Rounds the argumment (lo the nearest whole number) at the specified digit.

SAMPLE PROGRAM:

10 N=RND(-1)%1000
20 PRINT N

30 INPUT "WHERE";R
40 PRINT ROUND(N,R)
50 END

Displays random value and then rounds value at digit specified by numeric
input.

For example, responding to prompt “WHERE" with input of —2 when N
= 610.5765383 produces result of 610.6.

Pl

PURPOSE; Returns the value of .
FORMAT: Pl
EXAMPLE: S=2%Pi %R

EXPLANATION:

1. Returns the value of .

2. The value of = used for internal calculations is 3.1415926536.

3. The displayed value is rounded off to 10 digits, so the value of = is displayed as
3.141582654,

SAMPLE PROGRAM:

10 INPUT "RADIUS";R

20 PRINT "CIRCUMFERENCE=";2%PIxR
30 PRINT "AREA=";R"2x%PI

40 FCR I=0 TO 500:NEXT I

50 END

Calculates circumference and area of circle after input of radius.

ST

e

N e s
-)‘,m_ar,!‘:“\c.‘

[mﬁﬂ“‘i'%ﬁ“’fﬁ'ﬁﬁ&#-&ﬂm" LA R L W L ot

NUMERIC FUNCTIONS

RND

PURPOSE: Returns a random value in the range of 0 to 1.

FORMAT: RND (argument)
Numeric expression
* The parentheses enclosing the argument can be omitted when the

argument is a numeric vatue or variable.

EXAMPLE: RND (1) % 10
PARAMETERS: argument: Numeric expression
EXPLANATION: '

1. Returns a random value in the range of 0 to 1. (0 < RND (X} < 1)

2. Random numbers are generated from the same table when X > 0.

3. The last random number generated is repeated when X ~ 0.

4. Random numbers are generated from the random table when X < 0.

5. The same series of random numbers is generated each time a program is executed uniess
X <0

SAMPLE PROGRAM:

10 R=RND 1 :PRINT R
20 R=RND 0 :PRINT R
30 R=RND -1 :PRINT R
40 FOR I=1 TO 1000
50 NEXT I:GOTO 10

Generates random numbers using each type (positive, negative, zero) of
argument.

75

76

PART 1 Cu-BASIC

¥

CHARACTER FUNCTIONS
CHRS$

PURPOSE: Returns a single character which corresponds to the specified character
code.
FORMAT: CHRS$ {code)
Numeric expression
EXAMPLE: "CHRS$ (65)

PARAMETERS: code: Numeric expression truncated to an integer in the range of
0 = code < 256

EXPLANATION:

Variables can also be used as a parameter, and decimal parts of numeric values are truncated.
A null is returned when a character does not exist for the specified character code.
SEE: ASC

SAMPLE PROGRAM:

10 FOR I=65 TO 30
20 PRINT CHR$(I):
30 NEXT I

ASC -

PURPOSE: Returns the character code corresponding to the character in the first
(tfeftmost) position of a string.
FCRMAT: ASC (string)
String expression
EXAMPLE: ASC (“A")
PARAMETERS: string: String expression
EXPLANATION:

1. Returns the character code corresponding to a character. The character code for the first
(leftmost) character only is returned for a string of two or more characters iong.
2. A value of 0 is returned for a null string.

SEE: - CHRS$, Character Code Table

————— - ———— ———
T S ——— -
. we e T

i3

ST

B

Vi

Sy P

L

LT

SR LR L SURS ST N

LIS T

e Ay T

ro—

T T SR A I R S TR

CHARACTER FUNCTIONS

SAMPLE PROGRAM:
10 INPUT"INPUT CEARACTERS'" ;RS
20 B$=LEFT$(2$,1)

30 C=ASC(A$}
40 PRINT"FIRST CHAR=";B$;" CODE=";C

50 END

Displays first character and corresponding character code for string input.

STR$

Converts the argument (numeric value or numeric expression value) to
a string.

FORMAT: STR$ (argument)
' String expression

PURPOSE:

EXAMPLE: STR$ (123), STR$ (255 + 3)
PARAMETERS: argument: Numeric expression
EXPLANATION:

1. Converts decimal values specified in the argument to strings.
2. Converted positive values include a leading space and converted negative values are

preceded by a minus sign.
SEE: VAL

SAMPLE PROGRAM:

10 INPUT"INPUT NUMBERS";N
20 S$=STR${(N)

30 C$=MID$(5%,2,1)

£0 PRINT"FIRST CHARACTER=";C$
50 END

Converts numeric input to a string. Next, the first number of converted
string is displayed as character.

77

78

PART 1T Ca-BASIC

VAL

PURPOSE:
FORMAT:

EXAMPLE:
PARAMETERS:
EXPLANATION:

Converts a numeric character string to a numeric value.
VAL (string)
String expression
A = VAL ("345")
string: String expression

1. Converts a numeric character string to a numeric value.

2. Numeric characters are converted up to the point in the string that a non-numeric charac-
ter is encountered. All subsequent characters are disregarded from the non-numeric
character onwards. (i.e. when A = VAL ("123A456"), A -~ 123).

3. The value of this function becomes 0 when the length of the string is 0 or when the lead-
ing character is non-numeric.

SEE:

STR$

SAMPLE PROGRAM:

10 INPUT"VALUE1l ", A$
20 INPUT"VALUEZ ",B$
30 C$=A$+R$

40 C=VAL(A$)+VAL(BS)
50 PRINT C$,C

Performs string addition and numeric addition of two input strings.

BRI L L e e T .

for

CHARACTER FUNCTIONS

MID$

PURPOSE: Returns a substring of a specified length from a specified position within
a string.
"FORMAT: MIDS (string, position {, number of characters])

String expression Numeric expression Numeric expression

EXAMPLE: MID$ (AS$, 5, 3)
PARAMETERS: 1. string: String expression

2. position: Numeric expression truncated to an integer in the range ot

1 =< position < 256

3. number of characters: Numeric expression truncated to an integer in
the range of 0 = number of characters < 256. The default option is
from the specified position 1o the end of the string when this parameter

is omitted.

EXPLANATION:

1.

Returns a substring of a specified length from a specified position within a string. A substring
from the specified position to the end of the string is returned when the length of the

substring is not specified.

. A substring of length 0 (null} is returned when the specified position exceeds the length

of the string.

. A substring from the specified position to the end of the string is returned when the speci-

fied number of characters is greater than the number of characters from the specified
position to the end of the string.

SEE: ' RIGHTS, LEFTS
SAMPLE PROGRAM:

10 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ”
20 INPUT "1 TO 26 FROM" B

30 PRINT "1 TO";27-B;"I0";

40 INPUT E

50 S$=MID$ (AS$,B,E)

50 PRINT S$

70 END

Uses numeric input to produce alphabetic series of a specified number
of characters starting from a specified location.

78

80

PART 1 Ca-BASIC

RIGHTS

PURPOSE: Returns a substring of a specified length counting from the right of a string.
FORMAT: RIGHTS (string, number of characters)

String expression Numeric expression
EXAMPLE: RIGHTS (“"ABCDEF", 3)

PARAMETERS: 1. string: String expression
2. number of characters: Numeric expression truncated to an integer in

the range of 0 < number of characters < 256.

EXPLANATION:
1. Returns a substring of a specified length counting from the right of string.
2. The entire string is returned as the substring when the specified number of characters

is greater than the number of characters in the string.
SEE: MID$, LEFTS
SAMPLE PROGRAM:

10 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
20 PRINT A$

30 INPUT"1 T0 26 HOW MANY GET";N
40 PRINT RIGHT$(A$,N)

50 END

Uses numeric input to display specified number of characters from end
of alphabe:ticp sequence.

T e Tk R T AR BT B AT T e

AR i e

{ | ST

CHARACTER FUNCTIONS

LEFTS

PURPOSE:
FORMAT:

=XAMPLE:
~ARAMETERS:

EXPLANATION:
1. Returns a substring of a specified lengt
2. The entire string is returned as the substring when

Returns a substring of a specified length counting from the teft of a string.

LEFTS (string, number of characters)
String expression Numeric expression

LEFTS$ (“ABCDEF”, 3)

1. string: String expression
2 number of characters: Numeric expression truncated to an integer in

the range of 0 = number of characters < 256.

h counting from the left of string.
the specified number of characters

is greater than the number of characters in the string.

SEE:

MID$, RIGHTS

SAMPLE PROGRAM:

10 A$="ABCDEFGHI JXLMNOPQRSTUVWXYZ"

20 PRINT A$
30 INPUT"1 TO 26 HOW MANY GET";N

40 PRINT LEFT$(A$,N)

58 END

Uses numeric input to dis

play specified number of characters from

beginning of alphabetic sequence.

81

82

PART 1 Cu-BASIC

LEN

PURPOSE: Returns a value which represents the number of characters contained in
a string.
FORMAT: LEN {string)
String expression
EXAMPLE: LEN (A$)

PARAMETERS: string: String expression

EXPLANATION:,
Returns a value which represents the number of character contained in a string, including

characters that don’t appear on the display (character codes from &H0 ~ 1F+) and spaces.
SAMPLE PROGRAM

10 INPUT"INPUT CHARACTERS";C$
20 PRINT"LENGTH=";LEN(C$)
30 END

Determines the length of an input string.

HEXS

PURPOSE: - - ' Returns a hexadecimal string for a decimal value specified in the argument.
FORMAT: HEX$ (argument)

: Numeric expression
EXAMPLE: HEXS$ (15)

PARAMETERS: Numeric expression truncated to an integer in the range of —32769 <
argument < 65536. Values more than 32767 are converted by subtract-

ing 65536.

EXPLANATION:
Returns a 4-digit hexadecimal string for a decimal value specified in the argument.

SEE: &H

CHARACTER FUNCTIONS

SAMPLE PROGRAM:

10 PRINT"DECIMAL";TAB(10);"HEX"
20 FOR I=0 TO 16

30 PRINT USING"#4";I;

40 PRINT TAB(10);HEX$(I)

50 FOR J=0 TO 250 :NEXT J

60 NEXT I

70 END

Displays the decimal values from 0 through 16 along with their hexadecimal
equivalents.

&H

PURPOSE: Converts the 1 through 4-digit hexadecimal value following &H to a decimal
value.
" FORMAT: &H argument
hexadecimal value
EXAMPLE: A = &HAF
PARAMETERS: On = argument = FFFFH
EXPLANATION:

1. Converts the 1 through 4-digit hexadecimal value following &H to a decimal value.
2. Hexadecimal values are formed using the values 0 through 8, plus the characters A
through F.

SEE HEXS
SAMPLE PROGRAM
10 FOR I=&H1 TO &H1O0
20 PRINT HEX$(I);I
30 FOR J=0 TO 250:NEXT J
40 NEXT T
50 END

Displays hexadecimal values and their decimal equivalents.

83

PART 1 Ca-BASIC

DEG

PURPOSE: Converts a sexagesimal value to a decimal value.

FORMAT: DEG (degrees [, minutes [, seconds]])
Numeric expression Numeric expression Numeric expression

EXAMPLE: DEG (1, 30, 10)

PARAMETERS: Degree, minutes, seconds: | DEG (degrees, minutes, seconds)|< 10"
EXPLANATION:

Converls the degrees, minutes, and seconds of sexagesimal values to decimal values
as follow:

DEG (degrees, minutes, seconds) = degrees + minutes/60 + seconds/3600

SAMPLE PROGRAM:

10 T$=TIME$

20 A=VAL{LEFT$(T$,2))
30 B=VAL(MID$(T$,3,2))
40 C=VAL(RIGHT$(T$,2))
50 PRINT T$;DEG(A,B,C)
50 END

Converts current time to decimal.

DMS$

PURPOSE: Converts a decimal value to a sexagesimal string.
FORMAT: DMS$ fargument)

Numeric expression
'EXAMPLE: DMS$ (1.52)

PARAMETERS: argument:
Numeric expression in the range of numeric expression < 10"
EXPLANATION: '

1. Converts decimal values to sexagesimal strings.
2. Minutes and seconds are not displayed when the argument is in the range of numeric
expression = 1x10° (1E6). In this case, the absolute vatue of the input value is convert-

ed to a string as it is.-
SAMPLE PROGRAM:

10 INPUT"INPUT NUMBER":N
20 PRINT"=";DMS$(N)
30 END

Converts input decima! values to sexagesimal strings.

R

fre Wt

r RTESE

CHARACTER FUNCTIONS

TIMES

PURPOSE: Returns the current time. Also used to set the time.
FORMAT: TIMES
TIMES$ = “current time string”
String
XAMPLE: TIME$ -~ “08:30"
EXPLANATION:

1. TIME$ is a system variable which stores the current time. Time is expressed as an
8-character string in the format: “hh:mm:ss”, where hh = hours, mm = minutes, and

ss = seconds.
5 Correct time is maintained even when the power of the unit is switched OFF.

3. The following format is used to assign a string to TIMES$ in order to set the time within
a range of "00:00" -~ "“23:59".

TIME$ = “hh:mm”
Leading zeros are added automatically when single digits are used for TIMES$ string

assignment.
SEE: DATES
SAMPLE PROGRAM:

10 INPUT "hh:mm:";T$
20 TIME$=T$

30 CLS

40 LOCATE 0,0

50 PRINT TIME$

£0 GOTO 40

Displays ciock after input of current time.

85

86

PART 1 Cu-BASIC

DATES

PURPOSE: Returns the current date. Also used to set the system date.
FORMAT: DATES
DATES = “date string”
String
EXAMPLE: DATE$ - "05-01-1986"

EXPLANATION:

1.
2.
3.

4.

DATES is a system variable which stores the current date.

The current dateis maintained even when the power of the unit is switched OFF.

The date is expressed as an 10-character string in the format: “MM-DD-YYYY", where
MM = month, DD = date, and YYYY = year.

The following format is used to assign a string to DATES$ in order to set the date within
a range of “01-01-1980" ~ "12-31-2079".

DATE$ = “MM-DD-YYYY"

Leading zeros are added aytomatically when single digits are used for setting the month
and date.

. The date assigned to DATES is automatically updated in accordance with the time as-

signed to TIMES.

SEE: TIMES
SAMPLE PROGRAM:

10 Y$=RIGET$(DATES, 4)

20 M$=LEFT$(DATES$,2)

30 D$=MID$ (DATES, ¢,2)

40 PRINT Y$:"-";M$;"-";D$;

Displays current date.

r;m

STATISTIC FUNCTIONS

STAT

PURPOSE: Inputs statistical data.

FORMAT: STAT X-data [, Y-data] [; frequency]
Numeric expression Numeric expression

EXAMPLE: STAT.1,3;10

PARAMETERS: 1. X-data: Numeric expression. The previous X-data is the default value

when omitted.
o Y.data: Numeric expression. The previous Y-data is the default value

when omitted.

3. Both X and Y cannot be omitted at the same time.

4. The default vaiue for the frequency is 1.

5. Specific data can be deleted by specifying a frequency of — 1 followed
by the X-data and Y-data to be deleted.

SEE: STAT CLEAR
SAMPLE PROGRAM:

10 STAT CLEAR

20 FOR I=1 TO 10

30 X=RND(1)*10:¥Y=RND(1)%100

40 STAT X,Y

50 NEXT I

50 LPRINT"CNT=";CNT

70 LPRINT"COR=";COR

80 LPRINT"LRA=";LRA;"LR3=";LRB

87

88

PART 1 Ce-BASIC

STAT CLEAR

PURPOSE: Initializes the statistical memories and should always be executed immedi-
ately before performing slatistical processing.

EXAMPLE; STAT CLEAR

SEE: STAT

SAMPLE PROGRAM:

10 STAT CLEAR

20 FCR I=1 TO 10

30 X=RND(1)%10:Y=RND(1)*100

40 STAT X,Y

50 NEXT I

60 LPRINT"SDX=";8DX;"SDY=";SDY

70 LPRINT"SDXN=";SDXN;"SDYN=";SDYN

CNT

PURPOSE: Returns the number of statistical data items processed.
EXAMPLE: =~ - PRINT "NUMBER OF DATA = ", CNT

EXPLANATION:
Returns the number of statistical data items input using the STAT statement.

ATH T L R T T

S s

STATISTIC FUNCTIONS

SUMX, SUMY, SUMX2, SUMY2, SUMXY

s T R

e

PURPOSE: SUMX: Sum of X-data
SUMY: Sum of Y-data
SUMX2: X-data sum of squares
SUMY2: Y-data sum of sguares
SUMXY: X-data and Y-data sum of products

EXAMPLE: PRINT SUMX, SUMX2, SUMY, SUMY2

EXPLANATION;

These functions respectively return cumulative totals, sums of squares and sums of products
as noted below:

SUMX : Zx

SUMY : Zy

SUMX2 : =¥’

SUMY2 : £
SUMXY : Zxy

SAMPLE PROGRAM:

10 STAT CLEAR
20 FOR I=1 TO 10

30 X=RND(1)%10:Y=RND(21)x100

40 STAT X,Y

50 NEXT I

60 LPRINT"SUMX=";SUMX; "SUMY=""; SUMY

76 LPRINT"SUMX2=";SUMX2; "SUMY2=";SUMY2
80 LPRINT"SUMXY=";SUMXY

89

80

PART 1 Ce-BASIC

MEANX, MEANY

PURPOSE: MEANX: Returns the mean of X-data.
MEANY: Returns the mean of Y-data.
EXAMPLE: PRINT MEANX

EXPLANATION:

These functions return the means of X-data and Y-data as noted beliow:
MEANX : Ex/n

MEANY : Ty/n

SAMPLE PROGRAM:

10 STAT CLEAR

20 FOR I=1 TO 10

30 X=RND(1)*10:Y=RND(1)*100
40 STAT X,Y

50 NEXT I

60 LPRINT"MEANX=";MEANX

70 LPRINT"MEANY=";MEANY

SDX, SDY, SDXN, SDYN

PURPOSE: '~ - SDX: Returns the sample standard deviation of X-data.
SDY: Returns the sample standard deviation of Y-data.
SDXN: Returns the population standard deviation of X-data.
SDYN: Returns population standard deviation of Y-data.

EXAMPLE: PRINT SDX; SDY

EXPLANATION:
Return sample standard deviation and population standard deviation according to the following

formulas:
SDX : Xpnoy= / BFE_(Z2)
’ a{n—1}
SDY . Yan-1= n 'Zyz_ (zy)z
’ v nln—1)
' . 32— (2 4)
SDXN ! Xén= /3———;7——-

. — ?
SDYchwh=J/i—§£L§§iL

n

n: number of data items

STATISTIC FUNCTIONS

LRA, LRB

PURPOSE: LRA: Returns the linear regression constant term.
LRB: Returns the linear regression coefficient.
EXAMPLE: PRINT “a = " ; LRA, “b = " ; LRB

EXPLANATION:
Determine the linear regression constant term and linear regression coefficient.

LRA:=Zy—LRB- Zx
n

ne Txy—Sx+ Xy

LRB: ne - (Zx)?
n: number of data items
PURPOSE: Returns the correlation coefficient (r).
EXAMPLE: PRINT “r = " ; COR

EXPLANATION:
The value of the correlation coefficient is expressed as the following formula:

ne Zxy—2Zx* 2y
(n- 22— (Zx)%) (n- 2y~ (24)%)

COR.J

n: number of data items.

81

92

PART 1 Cu-BASIC

EOX, EOY

PURPOSE: EOX: Returns the estimated value of X in relation to Y.
EOY: Returns the estimated value of Y in relation to X.
FORMAT: EQOX argument

Numeric value

EQY argument
Numeric value

EXAMPLE: PRINT EOX1
EXPLANATION:
Return estimated values, the values of which are expressed by the foliowing formulas:
y—LRA
EOX(y) @ (3) =——
(y) @ () IRB

EOY(x) : () =LRA+xxLRB

g

E L

1/0 COMMANDS

110" COMMANDS -

LLIST

PURPOSE: Outputs program contents to the printer.
FORMAT: LLIST [starting line number] |- [ending line number]]
Line number Line number
[.]
EXAMPLE: LLIST 50 — 100

PARAMETERS: 1. starting line number: Program line number from which program
content printout is to begin. The default option is the first line of the
program.

2. ending line number: Program line number at which program content
printout is o end. The default option is the last line of the program.

Both the starting line number and ending tine number are within the
range of 1 < line number = 65535. The last line number used by BASIC

is specified when “." is used.
EXPLANATION:

1. Outputs program contents to the printer within the specified range.
2 This statement differs from LIST in that output is to the printer without showing program

contents on the display.
3. LLIST cannot be used in the CAL mode.

SEE: LIST

93

84

PART 1 Cs~BASIC

LPRINT

PURPOSE: Outputs text to the printer.
FORMAT: LPRINT [output data] [{ ! } [output data]])*
EXAMPLE: LPRINT A, B

PARAMETERS: output data: Output control function, numeric expression, or string

expression

EXPLANATION:

1.

Outputs data to the printer. When the output data is a control function, the corresponding
operation is performed. Numeric or string expressions as output data result in printout
of the resulting value.

. Numeric expression values are printed in decimal, and the print format is the same as

that for the PRINT statement (see PRINT).

. String expression values are output as they are to the printer.
. Including a comma between output data causes a zone tab to be inserted between output

data at output.

Zone tabs are set at 14-character intervals (counting from 0, within a range of 255 charac-
ters) following the last carrier return instruction, and zone tab outputs spaces from the
current location to the next zone tab. Consequently, the printing of the first character of
an output data following a comma is performed at the next zone tab.

10 LPRINT
20 FOR I=1 TO 20:LPRINT"x",:NEXT I
30 LPRINT
40 END

-

. Including a semicolon between output data causes the output data to be output sequentially.

10 LPRINT

20 FOR I=1 TO 50
30 LPRINT "(";I;")"
40 NEXT I :

50 LPRINT

60 END

6. Including a semicolon at the end of the statement causes the location immediately follow-

ing printout of the last output data to be the next printing position.

7. Including a comma at the end of an LPRINT statement performs a zone tab following prin-

tout of the last output data.

e e b————
-

[R R

e Sy

/0 COMMANDS

8. A carrier return is performed when a semicolon or comma is not included at the end of
the statement. Print positions are counted from 0 through 255, and the count is reset to
0 when it exceeds 255. Zone tabs and the TAB function are performed in accordance with
the print position count. CR-LF (internal code 0DH, 0AH) is performed at this time.

9. Actual printing begins when a carrier returnfline feed code is sent, and carrier return/line
feed is performed automatically when printing reaches the extreme right of the paper.

SEE: PRINT
SAMPLE PROGRAM:

10 LPRINT

20 FOR I=1 TC 14:LPRINT"x";I,:NEXT I
30 LPRINT

40 END

LPRINT USING

PURPOSE: Outputs data to the printer according to a specified format.

FORMAT:
LPRINT USING format specification; output data {{ .} output data]”
String expression String or numeric String or numeric
expression expression

EXAMPLE: LPRINT USING "####" ;A B

PARAMETERS: 1. format specification: String one or more character long
2. output data: numeric or string expression

EXPLANATION:
Outputs data to the printer according to a specified format. See the PRINT USING state-

ment for details on the formats available.
SEE: PRINT USING
SAMPLE PROGRAM:

10 ANGLE 0

20 LPRINT"USING";TAB(8);"PRINT"
30 FOR I=0 TO 90 STEP 10

40 LPRINT USING"H.HEFHH";SIN(I):
50 LPRINT SIN{I)

60 NEXT I

95

95

PART 1 Ca-BASIC

OPEN

PURPOSE: Declares a file open for use.

FORMAT:

AS[#] file number

INPUT \ J
Numeric expression

OPEN “file descriptor” { FOR l OUTPUT
APPEND

EXAMPLE: OPEN “DATA1"” FOR QUTPUT AS #1
PARAMETERS: 1. file descriptor: String expression

2, file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16

EXPLANATION:

1.

2.

3.

11,

12.
13.

Opens the file specified by the file descriptor as the specified file number. Subsequent
input to and output from open files is performed by designating the file numbers.
Internal memory is the default option when the device name is omitted from the file
descriptor.

Specifying FOR INPUT makes sequential file input possible. An error is generated when
the specified file does not exist in internal memory and on the disk (when a fioppy disk
drive is being used).

. Specifying FOR OUTPUT makes sequential file output possible, and a new file is created

in internal memory or on the disk. Any currently existing file with the same filename is
deleted at this time.

. Specifying FOR APPEND makes output possible to a currently existing sequential file,

and locates the file buffer pointer at the end of the file. An NF error is generated when
the specified file does not exist.

. The following two conditions are specified when either FOR INPUT, FOR OUTPUT, or

FOR APPEND are not specified:
a) FDD (02) -
Random file access when a previously created file exists on the disk. If a file does not

already exist, a new file is created.
b} Communication circuit (COMO:)

Sequential access, but the file can be opened as a random file.
* Random file access cannot be specified for devices other than the FDD or communica-

tion circuit (i.e. internal memory, cassette tape recorder).

. Sequential files only can be opened with internal memory.
. APPEND OPEN cannot be specified for BASIC files, machine language files or random

files (including files stored on floppy disk).

. The size of a single record is automatically set at 256 bytes for random file access.
. An OP error is generated when an attempt is made to open a file which has already

been opened.
The file buffer is automatically retained, but an OM error is generated when the retained

1/O buffer area becomes full because of execution of the CLEAR statement.”
The OPEN statement can only be executed within a program.
Do not change disks while a file is opened.

(2 DI

MO P e s T e L S

R T S A T A L XL WS Ry A s i LWL

K

BRI

[e

T TR AT T O K - DT S AR e 10 0

/0 COMMANDS

SEE: CLOSE, FIELD
SAMPLE PROGRAM:

10 OPEN"TEST" FOR OUTPUT 2S5 #1
20 PRINT #1,"WRITE TEST"

30 CLOSE {1

40 OPEN"TEST" FOR INPUT AS #1
50 INPUT #1,CH$

60 CLOSE #1

70 PRINT "READ->";CH$

Creates sequential file in internal memory.

CLOSE

PURPOSE: Closes files and declares an end to the use of the /O (input/output) buffer.
FORMAT: CLOSE [{#] file number] [, [#] file number]”

Numeric expression Numeric expression
EXAMPLE: CLOSE #1

PARAMETERS: file number: Numeric expression truncated to an integer in the range
of t = file number < 16

EXPLANATION:

1. Closes the file specified by the file number.

2. All presently opened files are the default option when the file number is omitted.

3. An error is not generated when an attempt is made to close a file that has not been previ-

ously opened.
4. This statement also clears the (/O buffer.
5. All opened files are automatically closed at the end of a program even if the CLOSE state-

ment is not executed.
8. An OM error is generated for files which cannot be closed because of insufficient memory

capacity.
SEE: OPEN
SAMPLE PROGRAM:

10 OPEN"Q:TEST" FOR INPUT AS #i
20 INPUT #1,A$:PRINT AS$;

30 IF EOF(1)=0 THEN 20

40 CLCSE #1

97

98

PART 1 Ca-BASIC

PRINT #

PURPOSE: Outputs data 1o a sequential file.
FORMAT: PRINT # file number [, oulput data [{ !][outpul datal]*]
Numeric expression '
TAB()
Qutput data: String expression

Numeric expression

EXAMPLE: PRINT #1, A%
PARAMETERS: file number; Numeric expression truncated to an integer in the range

of 1 = file number < 16

EXPLANATION:

1.
2.

3.

Sequentially outputs data to the sequential file specified by the file number.

The contents of the output data are the same as those output to the printer by the LPRINT
statement (see LPRINT, PRINT).

A CR-LF (0Dn, 0AH) is output following the last output data when a semicolon and comma

are not included.

. This statement is only valid for sequential output, and for communication' circuit (COMO:)

inputfoutput files {see OPEN).

5. Multiple data items can be output with a single PRINT # execution using commas as
follows:
PRINT #1,A;",”;B;",",C$

SEE: PRINT # USING, INPUT #, PRINT, LPRINT

SAMPLE PROGRAM:

10 OPEN"0:TEST" FOR QUTPUT AS 41
20 INPUT"DATA=",A$
30 IF A$="" THEN 60
40 PRINT #1,A$

50 GOTO 20

60 CLOSE:END

/0 COMMANDS

PRINT # USING

PURPOSE:
FORMAT:

EXAMPLE:
PARAMETERS:

EXPLANATION:

Outputs data to a sequential file according to a specified format.

PRINT # file number, USING
Numeric expression

format specification ; output data [['] output data] *
String expression Numeric or Numeric or

string expression string expression

PRINT #1, USING “& &";A$

1. file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16

2. format specification; String expression

3. output data: Numeric or string expression

1. Outputs data to the file specified by the file number according to the specified format.
2. Format specifications are the same as those used with the PRINT USING statement (see

PRINT USING).

3. This statement is only valid for sequential output, and for communication circuit (COMO:)
input/output files (see OPEN).

SEE:

FRINT USING, PRINT #, OPEN

SAMPLE PROGRAM:

10 OPEN"TEST" FOR OUTPUT AS #1

20 PRINT #1,USING"H.H##":;PI

30 PRINT -§1,PI

40 CLOSE #1

50 OPEN"TEST" FOR INPUT AS #1

60 IF EQOF(1)=-1 THEN CLOSE #1:END
70 INPUT #1,2

80 PRINT A;

30 GOTO 69

95

100

PART 1 Cu-BASIC

INPUT 7

PURPOSE: Reads data from a sequential file.

FORMAT: INPUT# file number, variable name [, variable name]*
Numeric expression

EXAMPLE: INPUT #1, A

PARAMETERS: file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16

EXPLANATION:

1. Reads data from the file specified by the file number.

2. Data are input in the same format as data input using the INPUT statement {see INPUT).
Consequently, data are delimited using commas, quotation marks, CR codes (ODn) or CR,
LF codes (0DH, OAH). Internal codes 00 through 1FH and 7FH cannot be input, and lead-
ing spaces (spaces preceding that data) are disregarded.

3. This statement is only valid for sequential input, and for communication circuit (COMO:)
inputfoutput files (see OPEN).

4. Spaces can also be used as delimiters when data are read to numeric variables.
SEE: LINE INPUT #

SAMPLE PROGRAM:

10 OPEN"Q0:TEST" FOR INPUT AS #?
20 INPUT #2,A$

30 PRINT A$;

40 IF EOF(2)=0 THEN 20

50 CLOSE #2:END

WL e '!:;:g'&;kﬁm’}lr_ﬁi'lﬂ\:l T A 2 Dy R
RS SR o [b At e o ¢ N R T Lt

¥

L
]

T

T

s e

1O COMMANDS

LINE INPUT #

PURPOSE: Inputs a single line of data from a sequential file.

FORMAT: LINE INPUT # file number, string variable name
Numeric expression

EXAMPLE: LINE INPUT#1 , AS

PARAMETERS: 1. file number: Numeric expression truncated to an integer in the range
of 1 < file number < 16
2. string variable name

EXPLANATION:
1. Inputs one line only from the file specified by the file number.

2. Control codes (004 ~ 1FH) and 7FH are not read.

3. Reading of data continues until a CR code (ODH) or CR, LF code (0DH, OAH) is en-

countered.
SEE: INPUT #, INPUTS$

SAMPLE PROGRAM:

10 A$="ABCDE" :3$="aD1330"

20 CPEN"TEST" FOR OUTPUT AS #1
30 PRINT #1,A%,B$

40 CLOSE #1

50 OPEN"TEST" FOR INPUT AS #1
60 LINE INPUT #1,CH$

70 CLOSE #1

80 PRINT CH$

101

102

PART 1 Ci-BASIC

INPUTS

PURPOSE:; Reads the specified number of characters from a sequential file,
FORMAT: INPUTS (number of characters, [#] file number)

Numeric expression Numeric expression
EXAMPLE: INPUTS (16, #1)

PARAMETERS: 1. number of characters: Numeric expression truncated lo an integer in
the range of 0 < number of characters < 256
2. file number: Numeric expression truncated to an integer in the range
+of 1 < file number < 18

EXPLANATION:
1. Reads the specified number of characters from a sequential file.

2. All codes (004 ~ FFH) are read as they are.
3. This statement is only vaiid for sequential input, and for communication circuit (COMG:)

inputioutput files (see OPEN).
SAMPLE PROGRAM:

10 OPEN"TEST" FOR OUTPUT AS #1
20 PRINT #1,"ABCDE AD1990"

30 CLOSE #1

40 OPEN"TEST" FOR INPUT AS #1
50 CH$=INPUTS$(5,4#1)

60 CLOSE #1

70 PRINT CH$

EOF

PURPCSE: Indicates the end of file reading.
FORMAT: EOF {filte number)

Numeric expression
EXAMPLE: IF EOF (1) THEN END

PARAMETERS: file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16

EXPLANATION: o - - S

1. Indicates the end of reading for the file specified by the file number. Generally, this function
is assigned a value of 0, but the value becomes — 1 when the last record of a file is read.

2. A value of —1 is returned when the receive buffer {for RS-232C applications) becomes

empty.
3. This statement is only valid for sequential input (see OPEN]}.

O COMMANDS

FIELD

PURPOSE: Allocates string variables to an /O (input/output) butfer.
FORMAT: FIELD [#] filenumber [, @], stringlength AS string variable name
Numeric Numeric
expression expression
[, stringlength AS string variable name]*
Numeric
expression
EXAMPLE: FIELD #1, 40 AS N§, 20 AS TS

PARAMETERS: 1. file number; Numeric expression truncated to an integer in the range

of 1 = file number < 16

2. string length: Numeric expression truncated to an integer in the range
of 0 = string length < 256

3. string variable name: Array variables cannot be used.

EXPLANATION:

1.
2.

3.
. The FIELD statement can be executed any number of times for a single /O butfer for as-

Allocates string variables to an /O buffer which remain valid until the CLOSE statement

is executed.
This statement is executed before GET and PUT statements to allow reading data from

(GET) or writing data to {PUT) a random file.
The total of the specified string lengths cannot exceed 256 characters.

signment of data to the specified variables. Different FIELD statements can be used for
each GET and PUT.

. Using variables that appear in a FIELD statement as variables to the left of the equals

sign in an INPUT or LET statement before execution of CLOSE clears the FIELD flag and
converts the variables to normal (non-FIELD) string variables. The LSET or RSET state-
ment should always be used for assignment of data to a FIELD variable.

. Variables cannot be allocated using a FIELD statement until a file is opened using the

OPEN statement.

. Following the file number with ' @ ' causes this staterment to be regarded as a multiple

FIELD statement which is used when variable allocation cannot be performed by a single
FIELD variable.

. Executing the CLOSE statement assigns null data (three characters long) to the FIELD

function.

SEE: OPEN, GET, PUT, LSET, RSET

103

104

PART 1 Cu-BASIC

RSET

PURPOSE: Transfers the contents of a string expression to the random /O {input/out-
put) buffer,

FORMAT: RSET string variable name = string expression

EXAMPLE: 'RSET T$ = “TEL DATA"

PARAMETERS: 1. string variable name

2. string expression

EXPLANATION:

1.

2.
3.

Sets the contents df a string expression as right flush in the area of a string variable allo-

cated by the FIELD statement.
Only string variables allocated to the IO buffer by the FIELD statement can be used.

String variables defined by appearing to the left of the equals sign in INPUT or LET state-
ment cannot be used.

. Excess data are truncated when the string expression length is greater than the length

determined by the FIELD statement.

- Spaces (20w) are inserted when the string expression length is less than the length de-

termined by the FIELD statement.

. This statement differs from assignment statements in that the I/O buffer allocation is not
_altered after assignment. :

SEE: FIELD, PUT, LSET
SAMPLE PROGRAM:

10 OPEN"0:TEST" AS #1
20 FIELD #1,10 AS S$
30 LSET S$="ABRCDE"

40 PUT #1,1

50 RSET S$="AD1930"
60 PUT #1,2

70 CLOSE #1

80 END

Creates a random access file named “TEST" and writes the data
“ABCDE" and "AD1990" o the file.

170 COMMANDS

LSET

PURPOSE: Transfers the contents of a string expression to the random /O
(input/output) butfer.

FORMAT: LSET string variable name =~ string expression

EXAMPLE: LSET N$ = “NAME DATA”

PARAMETERS: 1. slring variable name

2. string expression

EXPLANATION:

1.

2.
3.

Sets the contents of a string expression as left flush in the area of a string variable allocat-
ed by the FIELD statement.

Only string variables allocated to the 1/O buffer by the FIELD statement can be used.
String variables defined by appearing to the left of the equals sign in INPUT or LET state-
ment cannot be used.

. Excess data are truncated when the string expression length is greater than the length

determined by the FIELD statement.

. Spaces (20H) are inserted when the string expression length is less than the length de-

termined by the FIELD statement.

. This statement differs from assignment statements in that the I/O buffer aliocation is not

altered after assignment.

SEE: FIELD, PUT, RSET

105

106

PART 1 Cur-BASIC

PUT

PURPOSE: Writes /O (inpul/output) buffer data to a file.
FORMAT: PUT file number, record number

Numeric expression Numeric expression
EXAMPLE: PUT #1, X

PARAMETERS: 1. file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16
2. record number: Numeric expression truncated to an integer in the
range of 1 < file record number < 1264

EXPLANATION:

1. Writes the contents of the)/O butfer to the file specified by the file number at the record
specified by the record number.

2. This statement is only valid for random access files input (see OPEN).

3. This statement is only valid for floppy disk files, and is not valid for RS-232C random files.

SEE: OPEN, FIELD, GET, LSET, RSET

GET

PURPOSE: Beadé data from a disk file to the /O (input output) buffer,
FORMAT: GET [#] file number, record number

Numeric expression Numeric expression
EXAMPLE: GET #1, X

PARAMETERS: 1. file number: Numeric expression truncated to an integer in the range
of 1 =< file number < 16
2. record number: Numeric expression truncated to an integer in the
range of 1 < file record number < 1284 '
EXPLANATION: :
1. Reads to the I/O buffer the contents of the record specified by the record number from
the file specified by the file number,
2. This statement is only valid for files opened as random access files (see OPEN).
3. This statement is only valid for floppy disk files, and is not valid for RS-232C random files.

SEE: OPEN, FIELD, PUT, LSET, RSET ’

T L e =

roamTg A

[SRR

Y0 COMMANDS

LOF

PURPOSE: Returns the number of record during random access. During RS-232C
operatlions, returns the remaining number of bytes in the RS-232C receive
buffer.

FORMAT: LOF (file number)

Numeric expression

EXAMPLE; RE = LOF (1)

PARAMETERS: file number: Numeric expression truncated to an integer in the range
of 1 = file number < 16

EXPLANATION:
1. An error is generated when the file number of an unopened file is specified.

2. The maximum values of LOF are as noted below:

Device LOF
Floppy disk 1263
RS-232C 255

3. This statement is only valid with random access files.
SAMFLE PROGRAM:

10 OPEN"0:TEST" AS #1
20 FIELD #1,10 AS S
30 F=LOF(1)

40 FOR I=1 TO F

50 GET #1,I

60 PRINT S$

70 NEXT I

80 CLOSE #1

30 END

Displays the contents of random access file “TEST”.

107

108

PART 1t Cu-BASIC

FORMAT

PURPOSE: Initializes a floppy disk.
FORMAT: FORMAT

EXPLANATION:

1. Initiglizes a floppy disk.

2. Note that all of the contents written on a floppy disk are erased when it is formatted.

3. An OP error is generated when an attempt is made to format a floppy disk while a disk
drive file is opened.

4. New floppy disks must always be formatted before they can be used for data storage.

5. An NR error is generated when an attempt is made to execute this command when the
floppy disk drive unit is not connected.

SAMPLE PROGRAM:

10 PRINT"THIS IS FORMAT PROGRAM"

20 PRINT"INSERT A DISK AND PUSH ANY KEY"
30 A$=INPUT$(1)

40 FORMAT

50 PRINT"FORMAT COMPLETED"

650 END

Formats a new floppy disk.

F— -

O COMMANDS

BSAVE

PURPOSE: Stores memory contents directly into a specified file.
FORMAT: BSAVE “file descriptor”, starting address, length, [execution starl address]
String expression Numeric Numeric Numeric

expression expression expression

EXAMPLE: BSAVE “0:TEST", &H7000, &H100, &H7000
PARAMETERS: 1. file descriptor: String expression

2. beginning address: Specifies the save starting address as an offset in
the range of 0000H ~ FFFFR.

3. length: Specifies the memory length (size) required for the save oper-
ation in the range of 00011 ~ FFFFH.

4. Execution start address: Specifies the execution start address of the
machine language program in the range of 6FFAH ~ 7FFEH.

EXPLANATION:

1.
2.

3.

Directly saves memory contents to a fiie.
Internal memory is the default option when the device name is omitted from the file

descriptor.
An error is generated and save is not performed when file descriptor specification is

improper.

. An error is generated when erroneous specifications are made for the starting address

or length.

. A machine language program must be located within the address range of 6FFAH ~

7FFER for execution.

. An AM error is generated and execution is not performed when CALL or MENU is used

for execution and an execution start address is not input using BSAVE.

. Files saved to internal memory using BSAVE cannot have the same filenames as previ-

ously stored BASIC or sequential files.

. Specifying an execution start address outside the range of 6FFAH ~ 7FFEH may result

in runaway execution.

SEE: BLOAD, CALL

SAMPLE
EXECUTION: BSAVE "0 : TEST", &H7000, &H100, &H7000

Save contents from 7000+ to 7100+ (length 100k) to floppy disk under file-
name "TEST™.

108

110

PART 1 Ce-BASIC

BLOAD

PURPOSE: Loads a file to internal memory.
FORMAT: BLOAD “file descriptor” [, [load start address] [, R]]

String expression Numeric expression

EXAMPLE: BLOAD “O:TEST", &H7000, R
PARAMETERS: 1. file descriptor; String expression

2. load start address: Specifies the load start address as an offset in the
range of 00001 ~ FFFFH.

8. R: Causes immediate execution of a machine language program once
it is loaded. This specification is limited to machine language programs
within the address range of 70004 ~ 7FFEN with the execution start
address specified when saved using BSAVE.

EXPLANATION;

1.

Loads the file (i.e. machine language program) specified by the file descriptor to internal
memory, starting from the specified load start address.

2. Internal memory is the default option when the device name is omitted from the file
descriptor. '

3. An error is generated and load is not performed when file descriptor specification is
improper. ‘

4. Loading is performed from the address specified by the BSAVE command when the load
start address is omitted.

5. The “R" option can be specified to execute a machine language program immediately
after ioading is complete. The use of this option is limited, however, to programs saved
using the BSAVE command in the address range of 7000+ ~ 7FFEH. Also, execution can-
not be performed unless an executicn start address was specified.

6. The BLOAD command does not perform memory area check, so load can be performed
anywhere in memory. Consequently, care must be exercised to avoid loading within
important files, in BASIC variable areas, or within BASIC programs already stored in
memory.

SEE: CLEAR, BSAVE, CALL

SAMPLE

EXECUTION: BLOAD "0 : TEST”, &H7000, R

Loads the file "TEST" from a floppy disk to internal memory beginning
' from address 7000+ and executes program.

i ﬁmﬁkﬁ’r‘iﬂ?'“w.‘w kg O T g PR T LI e e € L W v S e
AR SRR

o COMMANDS

SAVE

PURPOSE: Saves a program to a specified file.
FORMAT: SAVE ““file descriptor” [, A

String expression

EXAMPLE: SAVE "DEMO1”
PARAMETERS: 1. file descriplor: String expression

2. A: Specifies ASCIl format. Internal format is the default option when
omitted.

EXPLANATION:

1.
2.

3.

4,

5.

8.

7.

Qutputs the currently specified program conients 1o the file specified by the file descriptor.
Internal memory is the defauit option when the device name is omitted from the file
descriptor.

Programs are output in internal format (binary) when the “A"” specification is omitted.
Specifying “A" causes the program to be converted to and saved in ASCII format which
uses alphabetic characters such as those which appear when the LIST command is
executed.

This command closes all open files and the computer waits for command input once save
is complete.

Programs are saved in ASCII format regardless of the “A" specification when COMO: is
specified for the file descriptor.

Programs for which a password has been specified cannot be saved using ASCII format.

SEE: LOAD, PASS, MERGE, CHAIN

SAMPLE
EXECUTION: SAVE "0 TEST"

Saves a program to a floppy disk under the filename "TEST".

111

112

PART 1 Cu-BASIC

LOAD

PURPOSE: Reads from a file into memory.
FORMAT: LOAD ‘‘file descriptor”

String expression
EXAMPLE: LOAD "DEMOQ1"

PARAMETERS: file descriptor: String expression

EXPLANATION:

1. Reads from the file specified by the file descriptor to the currently specified program area.
The format of the file can be either internal or ASCIl format.

2. Internal memory is the default option when the device name is omitled from the file
descriptor,

3. Any program already present in the present program area is erased when this command
is executed.

4. This command closes all open files and the computer waits for command input once load
is complete,

5. LOAD file password current file password.

LOAD file
password
-\ B None
Current
file password
IIAII O x
:iB!' x O O
None o] o o

Circled programs can be loaded,

SEE: SAVE, PASS, CHAIN

SAMPLE
EXECUTION: LOAD "0 : TEST”

Reads the file “TEST” from a floppy disk file.

O COMMANDS

CHAIN

’:‘\-ﬂ—"t}y B T S SV P

PURPOSE: Calls and executes the program in the file specified by the file descriptor.
FORMAT: CHAIN “file descriptor”
String expression
EXAMPLE: CHAIN "DEMO3"
PARAMETERS: file descriptor: String expression
EXPLANATION:

1.

2.

3.

Calls and executes a program from the file specified by the file descriptor, and erases

any program currently contained in memory.
internal memory is the default option when the device name is omitted from the file

descriptor.
Chaining a program to which a password is assigned to a program without a password

results in a program with the password of the chained program.

. Only programs without passwords assigned or a program with the same password as that

assigned to the current file can be chained when a password has been specified for the
current file.

CHAIN file
password
AT "B None
Current
file password
HAII 0 x
IIB’I
None o} o} o

Circled programs can be chained.

5. This command closes all open files.
SAMPLE PROGRAM:

10 CLS

20 PRINT"NOW LOADING"
30 CHAIN"TEST"

43 END

Calls and executes the file “TEST" located in internal memory.

113

114

FART 1 Cu-BASIC

MERGE

PURFPOSE: Merges the program in the file specified by the file descriptor with a
program currently stored in memory.
FORMAT: MERGE ‘‘file descriptor”
Numeric expression
EXAMPLE: MERGE "“"DEMOQ2"

PARAMETERS: file descriptor: String expression

EXPLANATION: .
1. Appends the program specified by the file descriptor to the program currently present in
memory.

a) All of the program lines inciuded in the current program are merged with all of the pro-
gram lines included in the file program to create a new program as long as the line
numbers for both the merged programs are different,

b) When the two merged programs contain program lines with identical line numbers, the
file program lines take priority and are included in the new program.

2. Internal memory is the default option when the device name is omitted from the file
descriptor.

3. The file program must be in ASCII format,

4. This command closes all open files and the computer waits for command input once merge
is complete.

5. Only programs without passwords assigned or a program with the same password as that
assigned to the current file can be merged when a password has been specified for the
current file.

SAMPLE .
EXECUTION: ‘- -MERGE "0 : TEST"

Merges the disk file “TEST" with a program currently stored in memory.

VERIFY

PURPQOSE: Verifies the contents of a file stored on cassette tape.

FORMAT: VERIFY “CASQ: filename”
EXAMPLE: VERIFY “CAS0: DEMO”
PARAMETERS: file descriptor: String expression
EXPLANATION:

1. Verifies the contents of a file stored on cassette tape. -

2. Parity and checksum data included within the file itself are used for checkmg
3. This command can be executed either in the CAL mode or BASIC mode.

4. This command closes all open files.

SEE! SAVE, LOAD, BSAVE, BLOAD

SAMPLE
EXECUTION: VERIFY “CASO0 : TEST”

PART 2

ASSEMBLER REFERENCE

ek g b e 2 s e A et et e

P

s

B T - ...::J....r.. 7] ST

PART 2 ASSEMBLER REFERENCE

2-1 HARDWARE CONFIGURATION

This unit is composed of a 32K byte ROM and 8K byte RAM. Actual processing is performed
by a custom HD61700 LS, which is a one-chip processor with 32 bytes of RAM and 3072
words of ROM built-in. System upgrading is made possible by an optional RAM expansion
pack and a selection of peripheral devices,

192 x 32 dots
HD44352 32 columns x 4 line LCD
HD44353 HMD24353
HD61700
One-chip CPU
32KBROM
BKBRAM
FA-7 UF Bonmr AP-32 A —
) .) expansion pac
(interface box) disk drive 3oKB p P
o MT * FDD
* Centronics standard ¢ Centronics standard
* RS-232C * RS-232C

FP-100
Piotter-printer

3
i

2.2 HDG61700 OUTLINE

2-2 HD61700 OUTLINE

Features

The CMOS static configuration of the HD61700 results in an 8-bit microprocessor with built-
in ROM and RAM. The HD61700 CPU has the following features:

Decimal system calculation handling

Direct access to 256K bytes of memory area

Built-in 16-bit ROM (3072 words) for high speed processing
Low power consumption of 800uA {maximurm)

Built-in 32 x 8 bit ROM for access in word units

Built-in clock function {crystal with 32,768Hz)

Key terminals 12 x 11 + 1

Interrupt function *

Three input terminals

KEY/Pulse

One-minute timer (With power ON function)

* 8-bit input/output ports (software switching for input/output)
» Display control function

117

PARY 2 ASSEMBLER REFERENCE

HD61700 Block Diagram

Voo Vss
AD~ AT
ﬂ Main ROM
address
Addrass butfer decoder

- Address 1——-—’ ﬂ 16-bit address bus | i
€s0-Cs7 <: decoder

Crystal
32768Hz
I . . [
= Osciltator 8 blts = 16 bits
PC ‘
S5SP on
High-order USP Interrupt Interrupt |
addraess f—{ INTI
selector Xreg enable laich :> conltrol L] inTe
/} Yreg
Zreg ___.>
Clock
control 1 N K/ -
Shift control
and flag
Internal -
control signal 2
= KEY OUT
T\r E :> selector :) KO1-KO1?
[+]
L £
Instruction
decoder
11O port ~
il) oo ——) PP
RAM
32 x 8 bits
i v
{Main register) Data in Somis
- i
<:_—> LCD driver CE1~CE& |
RAM control &1~ 2 i
Address OP. vDDZ f
i J] I ﬁ TIMING E
Main ROM 3072 x 16 bits Data bus generator E
interface t ;
] [[Oscittator | l
L
I/00~1/07 Ceramic

. H[]} sroknz

*

118

2-2 HDBT17D0 QUTLINE

Internal Registers
The 32 8-bit regislérs and six 16-bit registers are all of CMOS static RAM configuration.

1. Main Register

The main registers are shown in the HD61700 Block Diagram marked as “"RAM (32 x 8
bits)"". Addresses 0 through 31 are identical to general RAM addresses, and 16-bit data can
be handled using any two main registers in combination.

2. Other Registers

* Program Counter (PC) 16-bit

The program counter indicates the final address of the current execution. A value of one
is added when execution is complete, and the next command is fetched. Addresses newly
specified by jump or call commands are also set in this register.

In the case of the RETURN command, the address popped from the stack is set in the pro-
gram counter.

* Stack pointers (SSP, USP) 16-bit

The HD61700 has two stack pointers, a system stack pointer and a user stack pointer.
Just as with a general stack pointer, the system stack pointer (SSP) saves the present pro-
gram counter address to the stack when CALL commands or interrupt handling routines are
encountered. This address is restored to the program counter upon return or interrupt return,
System stack pointer data is maintained even when the power of the unit is switched OFF.
The user stack pointer (USP) is predecremented by the PUSH command and postincremented
by the POP command regardless of system conditions.

¢ Index Register (X, Y, Z) 16-bit

The X-register and Z-register have virtually the same function, and can be used as 16-bit
data pointers. Memory addresses to which a bias value of 256 has been added can also
be specified for these index registers.

Index registers are also used in conjunction with transter commands and search commands.
The Y register is used as the terminal for transfer commands and search commands only.

Flag Registers _ -

MSB LSB
[[Z2C LZ UZ SW APO * * |

» Zero Flag Z (Non Zero Flag NZ)

Reset to 0 when all the bits of a calculation result are 0 (Z), and set to 1 when data are present
{NZ).

* Carry Flag C (Non Carry Flag NC)

Set to 1 when a carry or borrow occurs (C), and reset to 0 when a carry or borrow does not
occur (NC).

* Lower Digit Zero Flag LZ

Reset to 0 when the low-order 4 bits are 0 due to a calculation result (LZ), and set to 1 when
data are present.

* Upper Digit Zero Flag UZ

Reset to 0 when the high-order 4 bits are 0 (UZ), and set to 1 when data are present.

* Power Switch State Flag SW

Indicates the ON/OFF status of the power switch. This flag is set to 1 when power is ON,
and reset to 0 when power is OFF.

» Auto Power Off State Flag APO

Set to 1 when an OFF command is executed while the power switch is ON, and reset to

0 when the power switch is OFF.

118

PART 2 ASSEMBLER REFERENCE

Status Registers
The status registers are used to determine the status of a variety of functions.

Interrupt Enable Register IE (Read/Write Enable) 8-bit
Performs interrupt masking and sets the interrupt conditions.

1.

MSB

LSB

[E—

INT 1 Interrupt enable (1: enable) High priority
KEY/Pulse interrupt enable

INT 2 interrupt enable

One-minute timer interrupt enable

ON interrupt enable

Power ON from ON terminal enable (1: enable)
INT 1terminal interrupt edge specification 0: trailing edge, 1. leading edge
INT 2 terminal interrupt level specification 0: low level, 1: high level

The RESET operation clears this register entirely, and bits 0, 1, 5, 6, and 7 are also cleared
when power is OFF. The settings of bits 2 through 4 are maintained when power is switched
OFF.

2.

3.

Interrupt Select and Key Output Register IA (Read/Write Enable} 8-bit
Sets the type of interrupt and key output.

MSB

LsB

—

Key interrupt (1) or pulse interrupt (0) specification
32Hz (1) or 256Hz (0) specification when pulse interrupt is specified

2-bit pin specification is as follows when key interrupt is specified:
0: No pin specification

. o 1: One pin
4-bit key output specification as follows: 2: Two pins
0: Stop 3: All pins

1 —~ 12 : One-key output
' 13 : All-key output
14 : Undefined
15: Undefined

High-Order Address Specification Register UA (Read/Write Enable) 8-bit
The 2 bits of this register are added to the PC, X, Y, Z, SSP and USP 16-bit registers to
aliow specification of an 18-bit address (banking).

MSB

l.SB

Z-register high-order address specification {0 ~ 3}

X-register/Y-register high-order address specification
SSP/USP register high-order address specification

PC high-order address specification

The RESET operation clears this register entirely, and Z, X, Y and PC are also cleared when
power is OFF. SSP and USP are maintained when power is switched OFF.

120

Wl T

2-2 HDG61700 OUTLINE

4. Display Driver Control Register (Write Only) 8-bit
Outputs a control signal when display data or commands are sent to the display driver.-

MSs8 vDD2

CLOCK ON(1), OFF(0) of ¢1 and ¢2
Not used

CE4

CE3

CE2

CE1

LSB OP

Bit 5 is undefined, and s‘et values (except that set in bit 6) are output from the pin according
to negative logic.

5. Port Status Specification Register PE (Read/Write Enable) 8-bit

Specifies a port for either input or output.

MSB Specified port 7 as output (1) or input (0)
Specifies port 6 as output (1) or input (0)
Specifies port 5 as output (1) or input (0)
Specifies port 4 as output (1) or input (0)
Specifies port 3 as output (1) or input {0)
Specifies port 2 as output (1) or input {0)
Specifies port 1 as output (1) or input (0)
LS8 | | Specifies port 0 as output {1) or input (0)

All bits are cleared (Teéet to input status) when the RESET operation is performed or when
power is switched OFF.

6. Port Data Register PD (Read/Write Enable) 8-bit
The contents written in this register are output from the pins of ports specified for output.

MSB| | Port 7 output data value

Port & output data value
Port 5§ output data value
Port 4 output data value
' Port 3 output data value
"Port 2 output data yalue
Port 1 output data value
LSB Port 0 output data value

This register is not initialized by the RESET operation or when power is switched OFF
(undefined). '

121

PART 2 ASSEMBLER REFERENCE

2-3 COMMANDS

Command Length
There are nine types of commands, classified according to length (number of bytes required).

* 1-Byte Commands

] Operation code I

* 2-Byte Commands

Operation code

[Operation code] [0| ' } $C5]

I Operation code ‘l l‘/— l?—bil immeidate da!a]

* 3-Byte Commands

| Operationcode][o]1 1] scs ([0 0 o $C5 |
[Operaioncode][0 0 of "$C5 | [e-bit immediate data |
| Operation code | | Address L | Address H]
| Operationcode | [o]] 0][sbitimmediate data |

Operalion code

* 4.Byte Commands

[Operation code j l 00 0| $C5 J [16-bit immediate data L] [16-bit immediate data H |

| Operationcoge " | [o] | | 0 | [16-bit immediate data L | [16-bil immediate data H |

Operalion code

* §: main register address

122

B R

R

I

rm 4 TR UAAY o L AL TS T o W b

2-3 COMMANDS

Machine Language Command Symbols

The symbols listed below are used in the explanations and examples throughout this as-
sembler reference:

$0 ~ 3

Main register address specification

($&HO ~ $&H1F)

Y
X
1Z
5SS
us
KY
PC
Z
NZ
C
NC
Lz
uz
IE
1A
UA
PD
PE
™
C5
cs
C16

2O > 1+

S

; ;(’:reg!s:er q gg':) iR indicates both thg X and Z
register (16-bit) registers. R-register: X-register or

Z-register (16-bit) JZ-regisler

System stack pointer (16-bit)

User stack pointer (16-bit)

Key input register (12-bit)

Program counter (16-bit)

Zero flag

Non zero flag

Carry flag

Non carry flag

Low-order digit zero flag

High-order digit zero flag

Interrupt enable register (8-bit)

Interrupt select register (8-bit)

High-order address specification register (B-bit .

Port data register (8-bit) ’ () Status registers

Port status specification register (8-bit)

Timer register (8-bit)

5-bit immediate data &H00 -~ &H1F or 0 ~ 31

8-bit immediate data &H00 ~ &HFF or 0 ~ 255

16-bit immediate data &H0000 ~ &HFFFF or 0 — 65535

: Transfer direction
" Addition

Subtragtion

Logical product (AND)

Logical sum (OR)

Exclusive OR (XOR)

Hexadecimal

Contents of memory pointed to by the register included within ()

(IRx8C5) External memory contents addressed using R-register contents
offset by main register contents

(IR=C8) External memory contents addressed using R-register contents
offset by 8-bit immediate data
($C5) External memory contents addressed using contents (16-bit) at

location pointed to by main register Add (low'order), Add + 1
{high-order) :

‘Add AL ARAL
Add+1 AH
Main register External memory

* {IRx A): Either main register or 8-bit immediate data can be used to specify
offset.

123

PART 2 ASSEMBLER REFERENCE

Flags

(Blank) : No change

0 : Clearto 0

1 : Setto 1

M : Set or clear according to command execution result

Command Components

Mnemonic

!

AD $15, $29

. T T.2nd operand

1st operand

124

MNEMONICS

IIERAL S ey R TLT A,Y
oot aionaoui,

126

PART 2 ASSEMBLER REFERENCE

TRANSFER COMMANDS (@-81T)

LD (LOAD)

+ Main Register to Main Register
PURPOSE: Transfers the contents of the main register specified by the #2 operand to

FORMAT:
EXAMPLE:

the main register specified by the #1 operand.

LD $C5, $C5
LD $15, $29
Main register Main register
$15 A7 $15 49
Execution
$29 49 $29 49

» External Memory to Main Register (1)

PURPOSE: Transfers the contents at the external memory location specified by the #2
operand to the main register specified by the #1 operand.
FORMAT: LD $C5, (IR = A)
EXAMPLE: LD $0, (IZ + &H4F)
LD 815, (IX — $30)
Main regfst;r External memory Z-register = 8000H
$0| 8F | 80aFu] CA | XU oo CA | s04Fw| CA

Z-register = 8000H
+
4F

» External Memory to Main Register (2)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers to the main register specified by the #1 operand, the contents at
the external memory location pointed to by the 2-byte main register specified
by the #2 operand. The external memory bank (high-order address) is the
same as the X-register bank.

LD 8$C5, (3C5)

LD $16, ($26)

, AT N 5 OGN S R 4 AR A 22 7o AT S B gl

TRANSFER COMMANDS (8.8IT)

Main register

$26 49
27 7 A
¥ Main register

Execution
External memory 5151: F:“:

7A49H F4
!

Same bank as X-register

« Immediate Data to Main Register

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the 8-bit immediate data contained in the #2 operand to the main
register specified by the #1 operand.

LD 8Cs5, C8

LD $10, &HAS

LDI (LOAD AND INCREMENT)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents at the external memory jocation pointed to by the
register specified by the #2 operand to the main register specified by the #1
operand. Then offset value + 1 is added to the register specified by the #2

operand.
LDt $12, (IR += A)

LDl 815, (IX — $18)
LDI 802, (IX + &HOD)
When X-register = 7BA4H

External memory _External memory
- T X-register = 78B2H
78A4H Execution 78A4H
78B1x 4B 78B1H| 48
7882+

ceeee - - . Main-register

$2| 4B

Execution example: LDI $02 (IX + &HOD}

128

PART 2 ASSEMBLER REFERENCE

ST (STORE)

« External Memory Specification Using R-Register

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the main register specified by the #1 operand to
the external memory location specified by the #2 operand.

ST $C5, (IR * A)

ST $11, (IX — $04)
ST $30, (IZ + &HAQC)

» External Memory Specification Using Main Register

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the main register specified by the #1 operand to
the external memory location pointed to by the main register specified by the
#2 operand {($C5 = low-order, $C5 + 1 = high-order). The external memory
bank (high-order address) is the same as the X-regisler bank.

ST $C5, ($C5)
ST $00, ($10)

Main register

$00 5A

$10| 40

$11 6B
Execution

External memory
External memory address 6B40H = 5AH

STI (STORE AND INCREMENT)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the main register specified by the #1 operand to
the external memory location specified by the # 2 operand. Then offset value
+ 1 is added to the R-register.

STl $C5, (IR = A)

STI $31, (1Z + 18)
ST $0, (IX - $05)

When X-register = 6A46H, register $05 = 03
Contents of mainregister $0 : [00110100 |

Execution

Contents of 6A46H — 3 (6A434) :[00110100 |
X-register changes o 6A44H

PPS (POP SYSTEM STACK POINTER)

TRANSFER COMMANDS (8.81T)

PURPOSE: Transfers the contents of the external memory location pointed to by the SSP
to the main register specified by the # 1 operand. Then 1 i5 added 1o the SSP.

FORMAT: PPS 5C5
EXAMPLE: PPS $10

65C8H 5A — 88P
SSP =65C8BH 65C0H DF
Execution
SSP =65CaH 65C8BH 5A — 58P
$10=5AH 65C9H DF

PPU (POP USER STACK POINTER)

PURPOSE: Transfers the contents of the external memory location pointed to by the USP
to the main register specified by the # 1 operand. Then 1 is added to the USP

(post increment).
FORMAT: PPU $C5
EXAMPLE: PPU $24

-

PHS (PUSH SYSTEM STACK POINTER)

PURPOSE: Subtracts 1 from the SSP (predecrement), then transfers the contents of the
main register specified by the #1 operand to the external memory location

pointed to by the SSP.
FORMAT: PHS $C5
EXAMPLE: PHS 8§24

SSP = 64ASH $24 : ABH 64A4H
54A5K

Execution

SSP = 64A4H G4A4H : ABH 64A4K
64A5H

BS9

3F

A8

3F

—SSP

—SSP

129

PART 2 ASSEMBLER REFERENCE

PHU (PUSH USER STACK POINTER)

PURPOSE: Subtracts 1 from the USP (predecrement), then transfers the contents of the
main register specified by the #1 operand to the memory location pointed
to by the USP.

FORMAT: PHU $C5
EXAMPLE: PHU $12

GFL (GET FLAG)

PURPOSE: Transfers the flag register contents to the main register specified by the #1

operand.
FORMAT: GFL $Cs

EXAMPLE: GFL $02

PFL (PUT FLAG)

PURPOSE: Transfers the contents of the main register specified by the #1 operand to
the flag register (high-order 4 bits only). :

FORMAT: PFL $C5 i
FLAGS: Z, C, LZ, and UZ fiags. Each is changed to preset value.
EXAMPLE: PFL $15

GPO (GET PORT)

PURPOSE: Transfers port terminal contents to the main register specified by the # 1 oper-
and. The input value is transferred when input is specified, and the output
value is transferred when output is specified.

FORMAT: GPO $Cs5
EXAMPLE: GPO $16

130

IS P T o AT

P e

AR S AT A T A . . _ - .
R ST S T T e T PR TS R e SO NI

o

e

5 P AT W P, T P E L ARLDy) Pt

ETVRTT RN

e e

TRANSFER COMMANDS (8-BIT}

GST (GET STATUS)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the status register specified by the #1 operand to
the main register specified by the #2 operand.

GST Sreg. $C5 (Sreg = status register)

GST PE, $15
PD
UA
lE
™

Execution

$15/10011011]

PE: [10011011 |
PE also retains its original contents.

PST (PUT STATUS)

* Main Register

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the main register specified by the #2 operand 1o
the status register specified by the #1 operand.

PST Sreg. $C5 (Status registers except for Sreg. TM)
PST UA, §25

+ 8-bit immediate Data

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the 8-bit inmediate data included in the #2 operand to the status
register specified by the #1 operand.
PST Sreg. CB8 (Status registers except for Sreg. T™)

PST IE, &HF5

131

132

PART 2 ASSEMBLER REFERENCE

TRANSFER COMMANDS (16-BIT)

LDW (LOAD WORD)

* Main Register to Main Register

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the 2-byte main register specified by the #2 oper-
and to the 2-byte main register specified by the #1 operand.

LDW $C5, $C5

LOW $15, $30
Main register Main register
$30 01 Execution $15 01
331 00 $16 00
$30 01
$31 00

* External Memory to Main Register (1)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents (2 bytes) at the memory location specified by the #2
operand to the 2-byte main register specified by the #1 operand.

LDW " §C5, (IR = $C5)
LDW $0, (IX + $15)

External memory Main register
981FH A5 Execution $00 A5
9820H 3C $01 3C
981CH+3

IX=981CH

Register $15 = 03

o en s - e vy
.ot e

LR a AT

LELgLvey LR

o BEEET e

TRANSFER COMMANDS (16-81T)

» External Memory to Main Register (2)

PURPOSE: Transfers to the 2-byle main register specified by the # 1 operand, the 2-byle
contents at the external memory location pointed to by the 2-byte main register
specified by the #2 operand. The external memory bank is the same as the

high-order address of the X-register.
FORMAT: LDW $C5, ($C5)
EXAMPLE: LDW $10, ($25)

Main register

$25 B2 . .
$26 A Main register
4 Execution $10 3F
External memory $11 0A
9AB2H 3F
SAB3H 0A

+ 16-bit Immediate Data to Main Register

PURPOSE: Transfers the 16-bit immediate data contained in the # 2 operand to the 2-byte
main register specified by the #1 operand.

FORMAT: LDW %29, C16
EXAMPLE: LDW $10, &HF92B

Main register

Execution $10 > B

$11 Fo9

LDIW (LOAD WORD AND INCREMENT)

PURPOSE: Transfers to the 2-byte main register specified by the #1 cperand, the con-
tents at the external memory location pointed to by the register specified by
the #2 operand. Then offset value + 2 is added to the register specified by
the #2 operand {postincrement),

FORMAT: LOIW 8C5, (IR x $C5)
EXAMPLE: LDIW 8§08, (IZ — $30)

133

PART 2 ASSEMBLER REFERENCE

External memory Main register

BA31H C1 Execution $08 Ci
B6A32H FB $09 FB
6A35H—4

Z-register = 6A35H.......... — Z-register = H6A33H

Register $30 = 04 (Z-register « Z-register — 4 + 2)

STW (STORE WORD)

+ External Memory Specification Using R-register

PURPOSE: Transfers the contents of the 2-byte main register specified by the # 1 oper-
and to the 2-byte external memory location specified by the %2 operand.

FORMAT: STW B8C5, (IR % $C5)

EXAMPLE: STW §11, (IX + $30)

+ External Memory Specification Using Main Register

PURPOSE: Transfers the contents of the 2-byte register specified by the #1 operand to
the 2-byte external memory location pointed to by the 2-byte main register
specified by the #2 operand. The external memory bank conforms with the
X-register.

FORMAT: STW $C5, ($C5)

EXAMPLE: STwW 300, ($10)

Main register

LY

$10 F3 External memory
$11 9A
Execution 9AF3H 39
Main register 9AF4H AO
$ 00 39
301 A0

TRANSFER COMMANDS (16-BIT}

STIW (STORE WORD AND INCREMENT)

PURPOSE: Transfers the contents of the 2-byle main register specified by the # 1 oper-
and to the 2-byte external memory location specitied by the # 2 operand. Then
the offset value + 2 is added to the R-regisler.

FORMAT: STIW $C5, (IR x $C%)
EXAMPLE: STIW 820, (1IZ - $10)

3
&
)
2
Ey
1
1
't .

Main register External memory
320 9C Execution 7B19H 9C
$21| (DA 7B1A+H b A
78641 —4BH
Z-register = 7B64r Z-register = 7B1BH

Register $10 = 4Bn

PPSW (POP SYSTEM STACK POINTER WORD)

PURPOSE: Transfers the contents of the external memory location pointed to by the SSP
and SSP + 1 to the 2-byte main register specified by the #1 operand. Then
2 is added to the SPP (postincrement).

FORMAT: PPSW $C5
EXAMPLE: PPSW §10

_‘% External memory Main register

g 65C8H Fg Execution $10 Fo

? 65C9H AC $11 AC

£ 65CAH 10

} SSP = 65C8H SSP = 65CAH

: | |

i

! PPUW (POP USER STACK POINTER WORD) :

3 PURPOSE: Transfers the contents of the external memory location pointed to by the USP
. and USP + 1 to the 2-byte main register specified by the # 1 operand.

FORMAT: PPUW 8C5 -
3 EXAMPLE: = PPUW §15

135

136

PART 2 ASSEMBLER REFERENCE

PHSW (PUSH SYSTEM STACK POINTER WORD)

PURPOSE:

FORMAT:
EXAMPLE:

Subtracts 1 (predecrement) from the SSP, then transfers the 2-byte contents
of the main register address specified by the # 1 operand ($C5, $C5 - 1)
to the external memory location pointed to by the SSP (SSP, SSP ~ 1),

PHSW $Cs

PHSW $10
Main register External memory
$09 24 Execution BA24H 24
$10 B8 BA25H B8
6A26H
S8P = 6A26H
SSP =6A24H

PHUW (PUSH USER STACK POINTER WORD)

PURPOSE:

FORMAT:
EXAMPLE:

Subtracts 1 (predecrement) from the USP, then transfers the 2-byte contents
of the main register address specified by the #1 operand ($C5, $C5 — 1) to
the external memory location pointed to by the USP {(USP, USP - 1),

PHUW 3Cs
PHUW 315

GRE (GET REGISTER)

PURPOSE:

FORMAT:
EXAMPLE:

Transfers the contents of the 16-bit register specified by the #1 operand to
the 2-byte main register specified by the #2 operand.

GRE Reg. $C5 (Reg.:IX, IY, IZ, SS, US, KY)
GRE IX, $25

Main register

Execution $25 2 E
$26 B8

IX = BB2EH

AR AT TR B 1

TRANSFER COMMANDS (16-BIT)

PRE (PUT REGISTER)

» Main Register to a 16-bit Register

PURPOSE: Transfers the contents of the 2-byte main register specified by the #2 oper-
and to the 16-bit register specified by the #1 operand.

FORMAT: PRE Reg. $C5 (Reg: IX, 1Y, I1Z, S5, US)
EXAMPLE: PRE 1Z, %12

Main register

$12 FO Execution
$13+ 7F

Z-register : 7FFOH

* 16-bit Immediate Data to a 16-bit Register

PURPOSE: Transfers the 16-bitimmediate data contained in the # 2 operand to the 16-bit
register specified by the #1 operand.

FORMAT: PRE Reg. C16

EXAMPLE: PRE 8§, &H70FF
SSP = 70FFH

137

138

PART 2 ASSEMBLER REFERENCE

ARITHMETIC COMMANDS (@-8m)

AD (ADD)

* Main Register + Main Register » Main Register

PURPOSE: Adds the contents of the main register specified by the #2 operand to the
contents of the main register specified by the #1 operand. The result is then
written in the main register specified by the #1 operand.

FORMAT: AD $C5, $Cs

FLLAGS: Z C L7z uz
M MMM

EXAMPLE: AD $10, $15

Main register Main register

$10 Execution” $10
$15[61 | $15 61 |

Z = 1 (Result data present)

C = 0 (Non carry)

LZ = 1 (Low-order digit data present)
UZ = 1 (High-order digit data present)

9 : B
(10013107171 |

High-order digit : Low-order digit

* Main Register + 8-bit Inmediate Data — Main Register

PURPOSE: Adds the 8-bit immediate data contained in the #2 operand to the main register
specified by the #1 operand. The result is then written in the main register
specified by the #1 operand.

FORMAT: AD 8$C5, Cs

FLAGS: Z C |LZ uz
M MMM

EXAMPLE: AD $21, &HA4

ARITHMETIC COMMANDS (B-BIT)

» External Memory + Main Register — External Memory

PURPOSE: Adds the contents of the main register specified by the #2 operand to the
contents of the external memory location pointed 1o by the main register speci-
fied by the #1 operand. The result is then written in the external memory
focation pointed to by the main register specified by the #1 operand.

FORMAT: AD (R * A), $C5

FLAGS: Z C LZ Uz
M MM M

EXAMPLE: AD (IX + $19), $0
AD (IZ — &H6B), $20

139

140

PART 2 ASSEMBLER REFERENCE

SB (SUBTRACT)

* Main Register — Main Register — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the contents of the main register specified by the #2 operand from
the contents of the main register specified by the # 1 operand. The result is
then written in the main register specified by the #1 operand.

SB $C5, $C5

Z C LZ uz
M MMM

SB $29, $03

Main Register Main register

256] goopuion 2980]
soa AC] sos[Ac_|]

Z=1, C=1, LZ=0' UZ=1

* Main Register — 8-bit Inmediate Data — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the 8-bit immediate data contained in the # 2 operand from the con-
tents of the main register specified by the # 1 operand. The result is then writ-
ten in the main register specified by the #1 operand.

SB $C5, Cs8
Z C Lz uz

MM M M

SB 327, 43 (Decimal)

* External Memory — Main Register — External Memory

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the contents of the main register specified by the # 2 operand from
the contents of the external memory location pointed to by the the main register
specified by the # 1 operand. The result is then written in the external memory
location pointed to by the main register specified by the #1 operand.

SB (IR * A), $C5

Z C Lz Uuz
M MMM

SB (IX —~ $05), $30
SB (1Z + $11), $29

s alng
IEL ety e

G FL e S R O ey

e g 1

R M e b 0 Ll K e S

ARITHMETIC COMMANDS (6-BiT}

ADB (BINARY CODED DECIMAL ADDITION)

* Main Register + Main Register — Main Register

PURPOSE: Performs bcd addition of the contents of the main register specified by the
2 operand and the contents of the main register specified by the #1 oper-
and. The result is then written in the main register specified by the #1 operand.

FORMAT: ADB $C5, $C5

FLAGS: Z C LZ Uz
M MMM

EXAMPLE: ADB $14, $20

Main register Main register

520 $20

Z=1,C=1,1Z=1,UZ=1

The high-order and low-order 4 bits are treated as binary coded decimal.
In the above exampie, express as LD, $14, $H89 to set 89+ to $14.

* Main Register + B-bit Immediate Data — Main Register

PURPOSE: Performs bcd addition of the 8-bit immediate data contained in the #2 oper-
and and the contents of the main register specified by the #1 operand. The
result is then written in the main register specified by the #1 operand.

FORMAT: ADB $C5, C8 '

FLAGS: Z C Lz Uz
MMM M

EXAMPLE: ADB $23, &H49

141

142

PART 2 ASSEMBLER REFERENCE

SBB (BINARY CODED DECIMAL SUBTRACTION)

* Main Register — Main Register - Main Register

PURPOSE: Performs bcd subtraction of the value of the main register specified by the
2 operand from the contents of the main register specified by the #1 oper-
and. The result is then written in the main register specified by the # 1 operand.

FORMAT: SBB $C5, $C5

FLAGS: Z C Z uz
MMM M

EXAMPLE: SBB $06, $23

Main register Main register

$06 Execution $06 :99 :]
s23[35 | $23

Z=1,C=1,12=1, UZ=1

* Main Register — 8-bit Inmediate Data — Main Register

PURPOSE: Performs bed subtraction of the 8-bit immediate data contained in the #2 oper-
and from the contents of the main register specified by the # 1 operand. The
result is then written in the main register specified by the #1 operand.

FORMAT: SBB $C5, C8

FLAGS: Z C LZ uz
M M M M

EXAMPLE: SBB $13, &H85

ADC (ADD CHECK)

* Main Register + Main Register

PURPOSE: Adds the contents of the main register specified by the #2 operand to the
contents of the main register specified by the #1 operand. Only the status
of the flags are changed and the result of the addition is not written anywhere,

FORMAT: ADC 5C5, $C5

FLAGS: Z C LZ Uz
M MM M

ARITHMETIC COMMANDS (8-BIT)
EXAMPLE: ADC %10, $15

Main register Main register

$10 Execution $10 E Contents of the main
$15 sis[61

Z=1,C=0,LZ=1, UZ=1

+ Main Register + B8-bit immediate Data

PURPOSE: Adds the 8-bit immediate data contained in the #2 operand to the contents
of the majn register specified by the # 1 operand. Only the status of the flags
are changed and the result of the addition is not written anywhere.

FORMAT: ADC §C5, C8

FLAGS: Z C LZ UZ
MMM M

EXAMPLE: ADC $12, 63

* External Memory + Main Register

PURPOSE: Adds the contents of the main register specified by the ¥2 operand to the
contents of the external memeory location pointed to by the # 1 operand. Only
the status of the flags are changed and the result of the addition is not written

anywhere.
FORMAT: ADC (IR £ A), $C5
FLAGS: Z C LZ UZ
MM MM

EXAMPLE: ADC (IX + $21), $00
ADC (IZ — &H9E), $27

regisier do not change.

143

144

PART 2 ASSEMBLER REFERENCE

SBC (SUBTRACT CHECK)

* Main Register — Main Register

PURPOSE: Subtracts the contents of the main register specified by the # 2 operand from
the contents of the main register specified by the #1 operand. Only the sta-
tus of the flags are changed and the result of the subtraction is not written

anywhere,
FORMAT: SBC $C5, 3$C5
FLAGS: Z C LZ Uz

M MMM

EXAMPLE: SBC "$10, $15

Main register Main register

$10 Execution $10
$15 $15

(2FK—AFH) Z=1,C=1, LZ=0, UZ=1

Data do not change.

* Main Register — 8-bit immediate data

PURPOSE: Subtracts the 8-bit immediate data contained in the # 2 operand from the con-
tents of the main register specified by the # 1 operand. Only the status of the
flags are changed and the result of the subtraction is not written anywhere.

FORMAT: SBC $C5, Cs8

FLAGS: Z C LZ Uz
M MMM

EXAMPLE: SBC $24, 129

* External Memory — Main Register

PURPOSE: Subtracts the contents of the main register specified by the #2 operand from
the contents of the external memory location pointed to by the # 1 operand.
Cnly the status of the flags are changed and the result of the subtraction is

not written anywhere.
FORMAT: SBC (IR = A), $C5

FLAGS: - Z C Lz UZ
M MMM

"EXAMPLE: SBC (IX — &H9B), $10

SBC (IZ + $11), $21

Fo oy PR30 i e P AN Ao Vi Mt LT

TR S e R Ny U TR A M P 1 L - e AN s

e s e

ARITHMETIC COMMANDS (B-OIT)

AN (AND)

T I L e e N O TS S A RN e I
A - M T e o i i A L Y

« Main Register A Main Register — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Produces the logical product (AND) for the contents of the main register speci-
fied by the # 1 operand and the contents of the main register specified by the
#2 operand. The result is then written in the main register specified by the

#1 operand,
AN $C5, 8C5

Z C LZ UZ
M 0 M M

AN $12, "$29

Main register Main register
$12 (11011001 | $12[01010000 |

Execution

$29 (01110110 $29{ 01110111 |

Z=1, C=0, LZ=0, UZ=1

» Main Register A 8-bit immediate Data — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Produces the logical product (AND) for the contents of the main register speci-
fied by the #1 operand and the 8-bit immediate data contained inthe # 2 oper-
and. The result is then written in the main register specified by the # 1 operand.

AN 8C5, C8

Z C.LlZ UZ
M 0 M M

AN 820, &H3F

145

146

PART 2 ASSEMBLER REFERENCE

NA (NAND)

* Main Register A Main Register - Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Takes the NAND (inverted AND) for the contents of the main register speci-
fied by the # 1 operand and the contents of the main register specified by the
#2 operand. The result is then written in the main register specified by the
#1 operand.

NA $C5, $C5

Z C LZ uzZ
M 1T MM

NA $11, $26

Main register Main register
$11 (11011001] Execution g44[797017170

$26 (01110111 | $26 (01110111 |

Z=1,C=1,LZ=1, UZ=1

* Main register A 8-bit Inmediate Data — Main Register

PURPQCSE:

FORMAT:
FLAGS:

EXAMPLE:

‘Takes the NAND (inverted AND) for the contents of the main register speci-
fied by the # 1 operand and the 8-bit immediate data contained in the #2 oper-
and. The resuit is then written in the main register specified by the # 1 operand.

NA $C5, Cs8

Z C 1Z uz
M 1T M M
NA $00, 217

OR (OR)

* Main Register v Main Register — Main Register

PURPOSE:

FORMAT:
FLAGS:

Produces the logical sum (OR}) for the contents of the main register specified
by the #1 operand and the contents of the main register specified by the # 2
operand. The result is then written in the main register specified by the # 1
operand.

OR $C5, $C5
Z ¢ Lz uz

M 1T M M

EXAMPLE:

ARITHMETIC COMMANDS (8-8IT)

OR %16, &10
Main register Main register
$16 (00101003] Execution $16(10101101 |

$10 (10001100 | $10[10001100]

Z=1,C=1,172=1, UZ=1

« Main Register v 8-bit Inmediate Data — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Produces the logical sum (OR) for the contents of the main register specified
by the #1 operand and the 8-bit immediate data contained in the #2 oper-
and. The result is then written in the main register specified by the #1 operand.

OR 8C5, C8

Z C LZ Uz
M 1 M M

OR %22, &HF1

XR (EXCLUSIVE OR)

¢ Main Register @ Main Register — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Takes the XOR (exclusive OR) for the contents of the main register specified
by the #1 operand and the contents of the main register specified by the #2
operand. The result is then written in the main register specified by the #1
operand. '
XR_$C5, 3$C5

Z C LZ uzZ

M 0 M M

XR %4, $16
Main register Main register

$4 [10110100] gyecution $4[110107107]

$16 [01100001 |

$16 (01100001 |

Z=1,C=0,1Z=1, UZ=1

e Main register 8-bit © Immediate Data — Main Register

PURPOSE:

FORMAT:

Takes the XOR (exclusive OR) for the contents of the main register specified
by the #1 operand and the 8-bit immediate data contained in the #2 oper-
and. The result is then written in the main register specified by the # 1 operand.

XR $C5, (8

147

PART 2 ASSEMBLER REFERENCE

FLAGS:

Z C Lz Uz
M 0 MM

EXAMPLE: XR $15, 23

ANC (AND CHECK)

* Main Register A Main Register

PURPOSE: Produces the logical product (AND) for the contents of the main register speci-
fied by the #1 operand and the contents of the main register specified by the
2 operand. Only the status of the flags are changed and the result of the

AND is not written anywhere.
FORMAT: ANC $C5, $C5

FLAGS: Z C LZ Uz
M 0 M M

EXAMPLE: " ANC 8§10, $30

Main register Main register
$10 (11011001 | , $100 11011001] Contents are
Execution unchanged.
$30 (01110110} $30/ 01110110]

Z=1, C=0, LZ=0, UZ=1

* Main Regisie} A 8-bit Immediate Data

PURPOSE: Produces the logical product (AND) for the contents of the main register speci-
fied by the # 1 operand and the B-bit immediate data contained in the #2 oper-
and. Only the status of the flags are changed and the result of the AND is

not written anywhere.
FORMAT: ANC 8C5, C8

FLAGS: . - Z C LZ Uz
o M 0 M M

EXAMPLE: ANC 831, 2

148

ARITHMETIC COMMANDS (B-81T)

NAC (NAND CHECK)

* Main Register A Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Takes the NAND (inverted AND) for the contents of the main register speci-
fied by the # 1 operand and the contents of the main register specified by the
#2 operand. Only the status of the flags are changed and the result of the
NAND is not written anywhere.

NAC 8C5, $C5

Z C LZ uZ
M 1 M M

NAC* $11, $26

Main register Main register

$11 [110110071 | Eyecution $117 1107170607] Conlents are

unchanged.

$26 (01110111 | $26(01110111 |

Z=1,C=1,1Z=1,UZ=1

* Main register A 8-bit Immediate Data

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Takes the NAND (inverted AND) for the contents of the main register speci-
fied by the #1 operand and the 8-bit immediate data contained in the #2 oper-
and. Only the status of the flags are changed and the result is not written
anywhere. o

NAC .$C5, C8
Z C Lz uzZ
M1 M M

NAC §$30, &HBC

ORC (OR CHECK)

* Main Register v Main Register

PURPOSE:

FORMAT:
FLAGS:

Produces the logical sum (OR) for the contents of the main register specified
by the #1 operand and the contents of the main register specified by the #2
operand. Only the status of the flags are changed and the resuit is not written
anywhere. ' ST

ORC $C5, $C5

Z C [Z Uz

M 1 MM

148

150

PART 2 ASSEMBLER REFERENCE

EXAMPLE: ORC $16, $10

Main register Main register
$16 (00101007 | ion $16/ 00101001] Contents are
Execution unchanged.
$10 (10001100 | $10/ 10001100

Z2=1,C=1,1Z=1, UZ=1
* Main Register \v 8-bit Immediate Data

PURPOSE: Produces the logical sum (OR) for the contents of the main register specified
by the #1 operand and the B-bit immediate data contained in the #2 oper-
and. Only the status of the flags are changed and the result is not written

anywhere.
FORMAT: ORC 3Cs5, Cs
FLAGS: Z C LZ Uz
M 1 M M

EXAMPLE: ORC $10, &H9C

XRC (EXCLUSIVE OR CHECK)

* Main Register & Main Register

PURPOSE: Takes the XOR (exclusive OR) for the contents of the main register specified
by the #1 operand and the contents of the main register specified by the #2
operand. Only the status of the flags are changed and the result is not written

anywhere.
FORMAT: XRC $C5, $Cs
FLAGS: Z ¢ Lz Uz

M 0 MM

EXAMPLE: XRC $4, $16

Main register Main register
$4 {10110100] Execuion $4(10110100 Contents are
. unchanged.
$16 [01100001 $16/ 0110000 1|

Z=1,C=0,1Z=1, UZ=1

* Main register @ 8-bit Immediate Data

PURPOSE: Takes the XOR {exclusive OR) for the contents of the main register specified
by the #1 operand and the B-bit immediate data contained in the #2 oper-
and. Only the status of the flags are changed and the result is not written
anywhere.

ARITHMETIC COMMANDS (8-BIT}

FORMAT: XRC $Cs, C8

FLAGS: Z C LZ UZ
M 0 M M

EXAMPLE: XRC §15, &HFO

151

PART 2 ASSEMBLER REFERENCE

ARITHMETIC COMMANDS (16-8IT)

ADW (ADD WORD)

* Main Register + Main Register —~ Main Register

PURPOSE: Adds the contents of the 2-byte main register specified by the #2 operand
to the contents of the 2-byte main register specified by the #1 operand. The
result is then written in the 2-byte main register specified by the #1 operand,

FORMAT: ADW §Cs5, $Cs

FLAGS; Z T 1z uz

M MMM

EXAMPLE: ADW $10, $12

Main register

$10 6C
$11 A3

$12

EE

$13

NOTE: 16-bit Arithmetic Fiags

6 A

N
'<N+1

|

Main register

$10 5A
Execution $17 | OE
$12 EE
$13 6 A

Z2=1,C=1,LZ=1,UZ=0

Z: 0 when all 16 bits are 0.
F’C: 1 when a carry or borrow from the most significant bit (bit 15) occurs.
LZ: 0 when the low-order 4 bits of the high-order 8 bits are 0. ——
UZ: 0 when the high-order 4 bits of the high-order 8 bits are 0.

7

152

MSB

Carry flag register

ARITHMETIC COMMANDS (16-B!T)

» External Memory + Main Register — External Memory

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Adds the contents of the 2-byte main register specified by the #2 operand
to the contents of the 2-byle external memory location pointed 1o by the main
register specified by the # 1 operand. The resu't is then written in the 2-byle
external memory location pointed to by the main register specified by the # 1
operand.

ADW (IR * $C5), $C5

Z C LZ Uz
M MMM

ADW (IX - $3), $18

External memory External memory
93F4H 2C 93F4u 58
83F5H 96 . 93F5H 2C

Execution - X
Main register Main register
$18 2C $18 2C
319 96 $19 96
IX =93F4K Z2=1,C=1,1Z=1, UZ=1
$3:0

SBW (SUBTRACT WORD)

* Main Register — Main Register — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the contents of the 2-byte main register specified by the #2 oper-
and from the contents of the 2-byte main register specified by the #1 oper-
and. The result is then written in the 2-byte main register specified by the #1
operand.

SBW 8C5, 3C5

Z C LZ uz
M MMM

SBW $10, $28 _
Main register - Main register

$10 4 A $10 21

311 DB $11 00
Execution

$28 28 $28 29

$29 DB $29 DB

Z=1,C=0,LZ=0,UZ=0

153

154

PART 2 ASSEMBLER REFERENCE

* External Memory — Main Register — External Memory

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the contents of the 2-byte main register specified by the #2 oper-
and from the contents of the 2-byte external memory location pointed to by
the 2-byte main register specified by the # 1 operand. The resull is then writ-
ten in the 2-byte external memory location pointed to by the main register speci-
fied by the #1 operand.

SBW (IR x $5), $C5
Z C LZ uz
M M M M

SBW (1Z + $19), $14

ADBW (BINARY CODED DECIMAL WORD ADDITION)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Performs bed addition of the contents of the 2-byte main register specified
by the #2 operand to the contents of the 2-byte main register specified by
the #1 operand. The result is then written in the 2-byte main register speci-

fied by the #1 operand.
ADBW $C5, $C5

Z C Lz uZ
M MMM

ADBW §16, $21

Main register Main register
$16| - 75 $16 39
$17 38 $17 80
Execution
§21 64 321 64
$22 41 §22 41

Z=1,C=0, LZ=0, UZ=1

SBBW (BINARY CODED DECIMAL WORD SUBTRACTION)

PURPOSE:

FORMAT:

FLAGS:

EXAMPLE:

Performs bed subtraction of the contents of the 2-byte main register specified
by the #2 operand from the value of the 2-byte main register specified by the
#1 operand. The result is then written in the 2-byte main register specified

by the #1 operand. .] -
SBBW $C5, $C5

Z C.LZ uz
M MMM

SBBW $03, $29

ARITHMETIC COMMANDS (16-81T)

ADCW (ADD CHECK WORD)

ey 3 y P e
R e S T AP P e ety p e

» Main Register + Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Adds the contents of the 2-byte main register specified by the #2 operand
to the contents of the 2-byte main register specified by the # 1 operand. Only
the status of the flags are changed and the resuft of the addition is not written

anywhere,
ADCW §$C5, $CS

Z C LZ UZ
M M M M

ADCW $19, g27

Main register Main register
$19 6C $19 6C Contents are
$20| A3 s20| A3 | unchanged
Execution
$27 EE $27 EE
$28 6A $28 6 A

Z=1,C=1,1LZ=1,UZ=0

» External Memory + Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Adds the contents of the 2-byte main register specified by the #2 operand
to the contents of the 2-byte external memory location pointed to by the #1
operand. Only the status of the flags are changed and the result of the addi-

tion is not written anywhere.
ADCW. (IR = $C5), $C5

2 C LZ UZ
M MMM

ADCW (IX + $9), $14

155

ARITHMETIC COMMANDS (16-BIT)

ANW (AND WORD)

PURPOSE: Produces the logical product (AND) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byle main register speci-
fied by the #2 operand. The result is then written in the 2-byte main register

specified by the #1 operand.
FORMAT: ANW $C5, $C5

FLAGS: Z C LZ uz
M 0 M M

EXAMPLE: ANW 312, $19

Main register Main register
MSB LSB MSB LSB
$12(10011100 $12| 10001000
$13; 1100010 1 Execution $13/ 01000100
$19/ 1100101 1 $191 1100101 1
$20(01101100 $20, 01101100
Z=1,C=0,1Z=1, UZ=1

NAW (NAND WORD)

PURPOSE: Takes the NAND (inverted AND) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main register speci-
fied by the #2 operand. The result is then written in the 2-byte main register

specified by the #1 operand.
FORMAT: NAW $C5, $Cs5

FLAGS: Z C 1Z uz
M1 MM

EXAMPLE: NAW $23, $28

!
:
i
i
b

Main register ' ..~ Main register
$23/ 10010111 | $231 0111100 1
$2§ 0100_0110 Execution 24! 11111011
$28 11-0001 10 $286/ 11000110]
$29/ 00011101 $29(00011101]

Z=1,C=1, LZ=1, UZ=1

157

PART 2 ASSEMBLER REFERENCE

SBCW (SUBTRACT CHECK WORD)

¢ Main Register —~ Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Subtracts the contents of the 2-byte main register specified by the #2 oper-
and from the contents of the 2-byte main register specified by the # 1 oper-
and. Only the status of the flags are changed and the result of the subtraction
is not written anywhere,

SBCW $C5, $C5

Z C LZ UZ
M MMM

SBCW $10, $28

Main register Main register
$10 4 A $10 4 A
$H11 DB $11 DB
Execution
$28 29 $28 29
$29 DB $29 DB

Z=1,C=0,LZ=0,UZ=0

¢ External Memory — Main Register

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

156

Subtracts the contents of the 2-byte main register specified by the #2 oper-
and from the contents of the 2-byte external memory location pointed to by
the #1 operand. Only the status of the flags are changed and the result of
the subtraction is not written anywhere,

SBCW (IR * $C5), $C5
Z C LZ Uz

M MMM

SBCW (iIZ - $15), $0

158

PART 2 ASSEMBLER REFERENCE

ORW (OR WORD)

PURPOSE: Produces the logical sum (OR}) for the contents of the 2-byle main register
specified by the # 1 operand and the contents of the 2-byte main register speci-
fied by the #2 operand. The result is then writlen in the 2-byte main register
specified by the #1 operand.

FORMAT: ORW $Cs5, s$Cs

M 1T MM

EXAMPLE: ORW $12, $25

Main register Main register
$12/ 11000100 $12(11000110 |
$13[0101001 1] Execution $13 110300171 !
$26) 000000 10 $26) 00000010
$27 1100000 1 $271 1100000 1

Z=1,C=1,1Z=1, UZ=1

XRW (EXCLUSIVE OR WORD)

PURPOSE: Takes the XOR (exclusive OR) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main register speci-
fied by the #2 operand. The result is then written in the 2-byte main register
specified by the #1 operand.

FORMAT: - XRW $C5, $C5

FLAGS; Z C LZ uz
M ¢ M M

EXAMPLE: XRW $16, $27

Main register ” Main register

$16[10010111] $16{ 11001101]
$17/ 10110001 | $17/ 0111011 1

Execution

527'110110107 $27{ 01011010 |
$28| 11000110 | $28{ 11000110 |

Z=1,C=0, LZ=1, UZ=1

ARITHMETIC COMMANDS (16-BIT}

ANCW (AND CHECK WORD)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE;

Produces the logical product (AND) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main regisler speci-
fied by the # 2 operand. Only the status of the flags are changed and the result

of the AND is not written anywhere.
ANCW §C5, $C5

Z C Lz uz
M 0 M M

ANCW 3510, 821

NACW (NAND CHECK WORD)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Takes the NAND (inverted AND) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main register speci-
fied by the #2 operand. Only the status of the flags are changed and the result
of the NAND is not written anywhere.

NACW §C5, $C5

Z C LZ UZ
M 1 MM

NACW §$00, $19

ORCW (OR CHECK WORD)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Produces the logical sum (OR) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main register speci-
fied by the # 2 operand. Only the status of the flags are changed and the resuit
of the OR is not written anywhere.

ORCW $C5, $C5

Z C LZ UZ
M 1T MM

ORCW 823, $02

159

PART 2 ASSEMBLER REFERENCE

XRCW (EXCLUSIVE OR CHECK WORD)

PURPOSE: Takes the XOR (exclusive OR) for the contents of the 2-byte main register
specified by the # 1 operand and the contents of the 2-byte main regisler speci-
fied by the # 2 operand. Only the status of the flags are changed and the result
is not written anywhere. :

FORMAT: XRCW $Cs, $C5

FLAGS: Z C LZ yz
M 0 MM

EXAMPLE: XRCW $12, $30

160

ROTATE AND SHIFT COMMANDS (8-BIT)

ROTATE AND SHIFT COMMANDSgsm

ROU (ROTATE UP)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Performs a left rotation between the main register specified by the # 1 oper-
and and the carry flag register.

O — -

Carry flag MSB Main register LSB
register

ROU $C5

Z C 1LZ UZ
M MMM

ROU $16

(1] [c1100010 |

Carry flag)
register [Execution

(0] [110001071]

ROD (ROTATE DOWN)

PURPOSE:

FORMAT:
EXAMPLE:

Performs a right rotation between the main register specified by the # 1 oper-
and and the carry flag register.

O — 1

Carry flag MSB Main register LSB
register

ROD &C5
ROD §18

i61

PART 2 ASSEMBLER REFERENCE

BIU (BIT UP)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Shifts the contents of the main register specified by the #1 operand to the
feft. The least significant bit receives a 0, while the data from the most signifi-
cant bit moves to the carry flag register.

D_._L . —I_._uon
Carry flag MSB Main register LSB
register
BIU $Cs5
Z C LZ uz
M MMM
BiU $13
(0] [G1o010001] s$13
Carry flag
register 1 Execution

1] [Ho01000610] Z=1,C=1,12=1, UZ=1

BID (BIT DOWN)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

162

Shiftg, the contents of the main register specified by the #1 operand to the
right. The most significant bit receives a 0, while the data from the least sig-
nificant bit moves to the carry flag register.

0" -0
MSB Main register LSB Carry flag
register
BID 8C5
Z C LZ uz
MMM M
BiD $15 -

ROTATE AND SHIFT COMMANGS (8-D1T)

DIU (DIGIT UP)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Shifts the contents of the main register specified by the #1 operand to the
left in units of digits (4 bits). The low-order digit bits receive 0's.

[T]— o000

MSB Main register LS8

DIU $C5

Z C LZ UZ
M 0 0 M

DIV 812

$12 (10110110

Execution

$12 [01100000] Z=1,C=0,1Z=0,UZ=1

DID (DIGIT DOWN)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Shifts the contents of the main register specified by the #1 operand to the
right in units of digits (4 bits). The high-order digit bits receive 0's.

-

0000 — |_]
MSB Main register LSB
DID $C5
Z C LZ UZ
M 0 M O
DID $19

163

164

PART 2 ASSEMBLER REFERENCE

INV (INVERT)

PURPOSE:

FORMAT:
FLAGS:

EXAMPLE:

Converts the contents of the main register specified by the #1 operand 10
their ones complement.

INV $C5

Z C LZ uz
M 1 M M

INV §11

$11 00101101]

] Execution

$11 [1 1010010] z=1,C=1, LZ=1, UZ=1

CMP (COMPLEMENT)

PURPOSE:

FORMAT:

FLAGS:

EXAMPLE:

Converts the contents of the main register specified by the #1 operand to
their twos complement.

CMP $C5

Z C LZ uz
M MMM

CMP %21

$21{ 01011010 |

! Execution

$21/10100110] Z=1,C=0,LZ=1, UZ=1

ROTATE AND SHIFT COMMANDS (16-8IT)

ROTATE AND SHIFT COMMANDSsem,

ROUW (ROTATE UP WORD)

PURPOSE: Performs a left rotation between the 2-byte main register specified by the #1
operand and the carry flag register.

L —
Carry flag MSB C5+1 LSB MSB C5 LSB
register (C5 : main register address)
FORMAT: ROUW $C5
FLAGS: z C L7 Uz
M MMM
EXAMPLE: ROUW $13
[0] [10011000] [01011001]
$14 $13
l Execution
[{1] [00110000] [10110010]
Carry flag $14 $13-

register

-

Z2=1,C=1,LZ=0, UZ=1

RODW (ROTATE DOWN WORD)

PURPOSE: Performs a right rotation between the 2-byte main register specified by the
#1 operand and the carry flag register.

L — —

Carry flag MSB C5 LSB MSB C5-1 LSB
register

FORMAT: RODW §C5

FLAGS: Z C LZ UZ
) M M M M

165

166

PART 2 ASSEMBLER REFERENCE

EXAMPLE: RODW $12

(0] [T0011000] [010171003

Carry flag $12 $11
register l Execution
[01001100] [00107100]
$12 $11

Z=1,C=1,1Z=1, UZ=1

BIUW (BIT UP WORD)

PURPOSE: Shifts the contents of the 2-byte main register specified by the #1 operand
to the left. The least significant bit of the low-order byte receives a 0, while
the data from the most significant bit of the high-order byte moves to the car-
ry flag register.

[— — : J—o0

Carry flag MSB C5+1 LSB MSB C5 LSB
register

FORMAT: BIUW $Cs

M MMM

EXAMPLE: BIUW $30

1] 01011100] [T00710671 71
$31 J $30

Execution

loj [1o0711100671) [0o010i1710]
£31 $30

Z=1,C=0,LZ=1, UZ=1

BIDW (BIT DOWN WORD)

PURPOSE: Shifts the contents of the 2-byte main register specified by the #1 operand
. to the right. The most significant bit of the high-order byte receives a 0, while

the data from the least significant bit of the low-order byte moves to the carry.

flag register.

01 — =]
MSB Cs LSB MSB C5-1 LSB Carry flag
register

SS—

ROTATE AND SHIFT COMMANDS {16-BIT)

FORMAT: BIDW §$C5

FLAGS: 72 C LZ Uz
M MM M

EXAMPLE: BIDW $18

[110003700] [10000001] [0]

$18 $17 Carry flag
Execution register
[01100010) [01000000] [1]
$18 $17

Z=1,C=1,12=0,UZ=1

DIUW (DIGIT UP WORD)

PURPQSE: Shifts the contents of the 2-byte main register specified by the #1 operand
to the left in units of digits (4 bits). The low-order digit bits of the low-order

byte receive 0’'s.

! —— — = 0000

MSB C5+1 LSB MSB C5 LSB

FORMAT: DIUW $CS5

FLAGS: Z C LZ uz
M 0o M M

EXAMPLE: DIUW $15

(10110010 [11110111 |

316 $15
Execution
[00101111] [01110000 |
$16 $15

Z=1,C=0,1Z=1, UZ=1

167

PART 2 ASSEMBLER REFERENCE

DIDW (DIGIT DOWN WORD)

PURPOSE: Shifts the contents of the 2-byte main register specified by the # 1 operand
to the right in units of digits (4 bits). The high-order digit bits of the high-order
byte receive 0's.

0000— _ — i R — .

MSB C5 LSB MSB C5-1 LSB
FORMAT: DIDW $C5
M 0 M M

EXAMPLE: DIDW $09

!01101001) (01001100 |
$09 $08
Execution
00000110 10010100 |
$09 $08

Z=1,C=0,LZ=1,UZ=1

BYUW (BYTE UP WORD)

PURPOSE: Shifts the contents of the 2-byte main register specified by the #1 operand
to the left in units of bytes. The low-order byte receives 0’s.

| ——1— ——— | =— 00000000
MSB C5+1 LSB MSB C5 LsB

FORMAT: BYUW 3Cs

FLAGS: Z C LZ uz
M 0 M M

EXAMPLE: BYUW 815

{10110010] [00100110 |
$16 $15
’ Execution -

(00100110] (00000000 |
$16 $15

Z=1,C=0,LZ=1, UZ=1

168

ROTATE AND SHIFT COMMANDS (16.-81T)

BYDW (BYTE DOWN WORD)

PURPOSE: Shifts the contents of the 2-byte main register specified by the #1 operand
to the right in units of bytes. The high-order byle receives 0's.

— 3 =

C5 LSB MSB C5-1 LSB

00000000 —|
MS8
FORMAT: BYDW $C5

FLAGS: 7 C LZ Uz
M 0 M M

EXAMPLE: BYDW - $02
[11010010] [01001010

$02 $01
l Execution
00000000] [11010010 |
$02 $01

Z2=1,C=0,Z=1, UZ=1

INVW (INVERT WORD)

Converts the contents of the 2-byte main register specified by the #1 oper-
and to their ones complement.
FORMAT: INVW. $C5

FLAGS: 7 C LZ Uz
M 1 M M

PURPOSE:

EXAMPLE: INVW §03

[1to0110001] [01010071 1|
504 $03
Execution

01001110] [10101100]
$04 $03

Z=1,C=1,LZ=1, UZ=1

169

PARY 2 ASSEMBLER REFERENCE

CMPW (COMPLEMENT WORD)

‘PURPOSE: Converts the contents of the 2-byte main register specified by the #1 oper-
and to their twos complement.

FORMAT: CMPW $C5

FLAGS: Z C Lz uz
M MMM

EXAMPLE: CMPW 811

[to110001] {01010011]
$12 . $11
Execution

[01001110] [10101101]
$12 s

Z=1,C=0,LZ=1,UZ=1

170

JUMP COMMANDS (ABSOLUTE)

JUMP COMMANDS (ABSOLUTE)

Unconditional Jumps

PURPOSE: Jumps to the address specified by the 16-bit immediate data contained in the
#1 operand.

FORMAT: JP 16
EXAMPLE: JP &H9B4F

Conditional Jumps

JP Z.(JUMP ON ZERO)

PURPOSE: Jumps to the address specified by the #2 operand when the zero fiag (2) is
0 (result = D). Otherwise, execution proceeds to the next command.

FORMAT: JP Z C16
EXAMPLE: JP Z, &HF3BC

JP NZ (JUMP ON NON-ZERO)

PURPOSE: Jumps to the address specified by the #2 operand when the zero flag (Z) is
- 1 (result+#+0). Otherwise, execution proceeds to the next command.

FORMAT: JP NZ, Ci6
EXAMPLE: JP NZ, &H481F

JP C (JUMP ON CARRY)

PURPOSE: Jumps to the address specified by the #2 operand when the carry flag (C)
is 1 (carry produced by resuit). Otherwise, execution proceeds to the next

command.
FORMAT: .JP C, C16
EXAMPLE: JP C, &HA34C

171

172

PART 2 ASSEMBLER REFERENCE

JP NC (JUMP ON NON-CARRY)

PURPOSE:

FORMAT:
EXAMPLE:

Jumps to the address specified by the #2 operand when the carry flag (C)
is 0 {no carry produced by result). Otherwise, execution proceeds to the next
command.

JP NC, Ci16

JP NC, &H48FE

JP LZ (JUMP ON LOWER DIGIT ZERO)

PURPOSE:

FORMAT:
EXAMPLE:

Jumps to the address specified by the # 2 operand when the low-order digit
zero flag is 0 (low- order 4 bits = 0). Otherwise, execution proceeds to the
next command.

JPLZ, C16
JPLZ, &H79DA

JP UZ (JUMP ON UPPER DIGIT ZERO)

PURPOSE:

FORMAT:
EXAMPLE:

Jumps to the address specified by the # 2 operand when the high-order digit
zero flag is 0 (high-order 4 bits = 0). Otherwise, execution proceeds to the
next command.
JP UZ, Ci16

JP UZ, &HFF49

R

JUMP COMMANDS (RELATIVE)

JUMP COMMANDS | (RELATIVE)

With relative jump commands, a displacement expressed as immediate data (— 127 ~ + 127)
is added to the program counter (PC), and a jump is executed to the resulting address. Ad-
ding a displacement to the program counter for branching is known as a "'relative jump".

Unconditional Jumps

JR (RELATIVE JUMP)

PURPGCSE: Performs a relative jump.
FORMAT: JR = C7

7-bit immediate data
EXAMPLE: JR + &H7F
(127)

Conditional Jumps

JR Z (RELATIVE JUMP ON ZERO)

PURPOSE: Performs a relative jump when the zero flag is 0. Otherwise, execution pro-
ceeds to the next command.

FORMAT: JR Z, *C7
EXAMPLE: JR Z, -18

JR NZ (RELATIVE JUMP ON NON-ZERO)

PURPOSE: Performs a relative jump when the zero flag (Z) is 1. Otherwise, execution pro-
ceeds to the next command.

FORMAT: JR NZ, +C7
EXAMPLE: JR NZ, +&H4C

173

174

PART 2 ASSEMBLER REFERENCE

JR C (RELATIVE JUMP ON CARRY)

PURPOSE: Performs a relative jump when the carry flag (C) is 1. Otherwise, execution
proceeds to the next command.

FORMAT: JR C, *C7
EXAMPLE: JR C, =67

JR NC (RELATIVE JUMP ON NON-CARRY)

PURPOSE: Performs a relative jump when the non-carry flag (NC} is 0. Otherwise, execu-
tion proceeds to the next command.

FORMAT: JR NC, =*C7
EXAMPLE: JR NC, +120

JR LZ (RELATIVE JUMP ON LOWER DIGIT ZERO)

PURPOSE: Performs a relative jump when the low-order digit zero flag is 0 (low-order 4
bits = 0). Otherwise, execution proceeds to the next command.

FORMAT: JR LZ, *C7
EXAMPLE: JR LZ, -=-&H7E

JR UZ (RELATIVE JUMP ON UPPER DIGIT ZERO)

PURPOSE: Performs a relative jump when the high-order digit zero flag is O (high-order
4 bits = 0). Otherwise, execution proceeds to the next command.

FORMAT: JR UZ, z=C7
EXAMPLE: JR UZ, +127

CALL COMMANDS

CALL COMMANDS

The program counter contents that indicate the final address of the CAL command currently
being executed are pushed into the stack, and the system stack pointer is decremented (-2
Then execution jumps to an address specified by 16-bit immediate data. The RTN command
(see page 177) is used to return to the command following the original CAL command.

Unconditional Call

CAL (CALL)

PURPOSE:

FORMAT:
EXAMPLE:

Calls the address specified by the 16-bit immediate data contained in the # 1
operand.

CAL Cis
CAL &HF42C

Conditional Calls

CAL Z (CALL ON ZERO)

PURPOSE:

FORMAT:
EXAMPLE:

Calls the address specified by the 16-bit immediate data contained in the #2
operand when the zero flag (Z) is 0. Otherwise, execution proceeds to the next

command.
CAL Z, Ci1s
CAL Z, &H6ES3F

CAL NZ (CALL ON NON-ZERO)

PURPOSE:

FORMAT:

EXAMPLE:

Calls the address specified by the 16-bit immediate data contained in the &2
operand when the zero flag (Z) is 1. Otherwise, execution proceeds to the next

command.
CAlL. Nz, Ci6

CAL NZ, &H963E

175

176

FPART 2 ASSEMBLER REFERENCE

CAL C (CALL ON CARRY)

PURPOSE: Calls the address specified by the 16-bit immediate data contained in the &2
operand when the carry flag (C) is 1. Otherwise, execution proceeds to the

next command.
FORMAT: CAL C, Ci6
EXAMPLE: CAL C, &H4S520

CAL NC (CALL ON NON-CARRY)

PURPOSE: Calls tHe address specified by the 16-bit immediate data contained in the #2
operand when the carry flag (C) is 0. Otherwise, execution proceeds to the

next command.
FORMAT: CAL NC, Ci6
EXAMPLE: CAL NC, &HABCD

CAL LZ (CALL ON LOWER DIGIT ZERO)

PURPOSE: Calls the address specified by the 16-bit immediate data contained in the #2
operand when the low-order digit zero flag is O (low-order 4 bits = 0). Other-
wise, execution proceeds to the next command.

FORMAT: CAL LZ, Ci16
EXAMPLE: CAL LZ, &H4811

-

CAL UZ (CALL ON UPPER DIGIT ZERO)

PURPOSE: Calls the address specified by the 16-bit immediate data contained in the #2
operand when the high-order digit zero flag is 0 (high-order 4 bits = 0}. Other-
wise, execution proceeds to the next command.

FORMAT: CAL UZ, Ci6
EXAMPLE: CAL UZ, &HO45F

RETURN COMMANDS

RETURN COMMANDS

The RETURN commands are used to return from a subroutine to the main routine. A 16-bit
address is popped from the stack causing the system stack pointer to be incremented (+ 2).
One is added lo the address value and the result is transferred to the program counter (PC).

Unconditional Return

RTN (RETURN)

PURPOSE: Pops an address from the stack (SSP + 2) and transfers the result of address
+ 1 1o the program counter.

Main routine

/ Subroutine Address: 690BH
CAL &H&90B
\ RTN

FORMAT: ATN
EXAMPLE: RTN

C

Conditional Return

RTN Z (RETURN ON ZERO)

PURPOSE: Returns when the zero flag (2) is 0. Otherwise, execution proceeds 1o the next
command.

FORMAT: RTN Z
EXAMPLE: RTN Z

RTN NZ (RETURN ON NON-ZERO)

PURPOSE: Returns when the zero flag (Z) is 1. Otherwise, execution proceeds to the next
' command.

FORMAT: RTN NZ
EXAMPLE: RTN NZ

177

178

PART 2 ASSEMBLER REFERENCE

RTN C (RETURN ON CARRY)

PURPOSE: Returns when the carry flag (C} is 1. Otherwise, execution proceeds 1o the
next command.

FORMAT: RTN C
EXAMPLE: RTN C

RTN NC (RETURN ON NON-CARRY)

PURPOSE: Returns when the carry flag (C) is 0. Otherwise, execution proceeds to the
next command.

FORMAT: RTN NC
EXAMPLE: RTN NC

RTN LZ (RETURN ON LOWER DIGIT ZERO)

PURPOSE: Returns when the low-order digit zero flag is 0 (low-order 4 bits = 0). Other-
wise, execution proceeds to the next command.

FORMAT: RTN LZ
EXAMPLE: RTN LZ

RTN UZ (RETURN ON UPPER DIGIT ZERO)

PURPOSE: Returns when the high-order digit zero fiag is O (high-order 4 bits = 0). Other-

wise, execution proceeds to the next command.

FORMAT: RTN UZ
EXAMPLE: RTN UZ

BLOCK MOVE COMMANDS

BLOCK MOVE COMMANDS

Blocks of memory can be moved from one location to another using the index register,

BUP (BLOCK UP)

PURPOSE: Moves a block of memory where:

X-register = original block beginning address
Y-register = original block ending address
Z-register = destination beginning address

NOTE: In this case, X-register < Y-register.

Low-order)
Z-register
X-register

High-order Y-register

FORMAT: BUP
-EXAMPLE: BUP

X-register = 8000+ Y-register = 80FFH Z-register = 4000H

4000+ Z-register

B000H X-register
/Aj BOFFH Y-register

Execution

X-register = BOFFH Y-register = BOFFH Z:register = 40FFH

! 4000H.

ZZ
///4 40FFH Z-register
7 8000H

80FFH X-register, Y-register

179

180

PART 2 ASSEMBLER REFERENCE

BDN (BLOCK DOWN)

PURPOSE: Moves a block of memory where:

X-register = original block beginning address
Y-register = original block ending address
Z-register = destination beginning address

NOTE: In this case, X-register > Y-register.

Low-order Y-register
. X-register
i Z-regis

High-order gister

FORMAT: BDN
EXAMPLE: BDN

X-register : 7FFFH Y-register : 70004 Z-register : 9FFFH

////4 7000H Y-register

7FFFu X-register
9FFFu Z-register

, Execution

. X-register : 70004 Y-register : 70004 Z-register : 9000H

Z /// 7000H X-register, Y-register

777 90004 Z-register

BLOCK MOVE COMMANDS

" » Block Move Command Applications

Blocks can be inserted within memory without
deleting data that already are present. Assume

7000w that two blocks of data, A and B are present in
A memory as illustrated on the left. To inser a third
block of data {C) which is 20 bytes (14H) in size,
7100H itis first required to open up a 20-byte area using
B the BDN block move command after making the
7180H following preparations:
X-register — 717FH (PRE 1X, &H717F)
Y-register «— 7100H (PRE IY, &H7100)
Free area Z-register « 717FH + 14H = 7193H
b (PRE I1Z, &H7193)
Execution
70001
A
71008
20 bytes
71144 1 4
B
7194R

181

182

PART 2 ASSEMBLER REFERENCE

SEARCH COMMANDS

The search commands are used {o locate specified internal memory contents or 8-bit im-
mediate data within a range of memory defined by the index registers.

SUP (SEARCH UP)

¢ Internal Memory Value

PURPOSE: Searches the external memory within a specific range {X-register = begin-
ning address and Y-register = ending address) for the contents of the main
register specified by the # 1 operand. The zero flag is reset (fo 0} and the search
is terminated when the data is located, while X-register = Y-register is set
if the search is unsuccessful (Z flag = 1).
NOTE: In this case, X-register < Y-register.

FORMAT: SUP $CS5

M M MM

EXAMPLE: SUP $12

$12 X-register = 7500+, Y-register = 7FFFH

Execution

When 4C is located: Z = 0,C = 0, L.Z = 0, UZ

0
‘X-register = location (address) of 4C, Y-register = 7FFFH

+« 8-bit Immediate Data

PURPOSE: Searches the external memory within a specific range (X-register = begin-
ning address and Y-register = ending address) for the 8-bit immediate data
contained in the #1 operand. The zero flag is reset (to 0) and the search is
terminated when the data is located.

NOTE: In this case, X-register < Y-register.

FORMAT: SUP Cs8

FLAGS: Z C LZ uz
M M MM

EXAMPLE: SUP &H4C

——

SEARCH COMMANDS

SDN (SEARCH DOWN)

¢Internal Memdry Value

PURPOSE: Searches the external memory within a specific range (X-register = begin-
ning address and Y-register = ending address — 1) for the contents of the
main register specified by the # 1 operand. The zero flag is reset (to 0) and
the search is terminated when the data is located, while X-register = Y-register

is set if the search is unsuccessful (Z flag = 1).
NOTE: |In this case, X-register > Y-register.

FORMAT: SDN $C5

FLAGS: 77C Lz uz
M MM M

EXAMPLE: GSDN §15

Main register 9000w -~ Y-register
$15 24 |
. Search direction
X-register = 9FFFH
Y-register = 9000H 9FFFH — X-register
Execution
When 24+ is located at 94B2+:
9000w — Y-register
94B2+ 24 — X-register
9FFFH

2=0,C=0,1Z=0,UZ=0
X-register = 94B2H, Y-register = 9000H

+ 8.-bit Immediate Data

PURPOSE: - Searches the external memory within a specific range (X-register = begin-
ning address and Y-register = ending address — 1) for the 8-bit immediate
data contained in the # 1 operand. The zero flag is reset (to 0) and the X-register
is assigned a value which represents the address location — 1, while X-register
= Y-register is set if the search is unsuccessful (Z flag = 1).

NOTE: In this case, X-register > Y-register.

FORMAT: SDN C8 o -

FLAGS: . Z ¢ Lz uz
M MMM

EXAMPLE: SDN &H4A

i83

184

PART 2 ASSEMBLER REFCRENCE

SPECIAL COMMANDS

NOP (NO OPERATION)

PURPOSE: Increments (+ 1) the program counter.
FORMAT: NOP
EXAMPLE: NOP

CLT (CLEAR TIMER)

PURPOSE: Inputs a SET signal to all timer counters to set the value of the counters to 0.
FORMAT: CLT
EXAMPLE: CLT

FST (FAST)

PURPOSE: Uses the system clock without dividing (high-speed processing mode).
FORMAT: FST
EXAMPLE: FST

SLW (SLOW)

PURPOSE: Uses the system clock with 1/16 dividing (low power mode). However, auto-
matic switching to the high-speed processing mode is performed in the inter-

rupt handling routine.
FORMAT: SLw
EXAMPLE: S3LW

'OFF (OFF)

PURPOSE: Cuts the power supply of the internal logic VDD system.
FORMAT: OFF
EXAMPLE: OFF

SPECIAL COMMANDS

TRP (TRAP)

PURPOSE:

FORMAT:
EXAMPLE:

input of the TRP command operation code (FF) causes the trap address (ad-
dress where FF is wnitlen) to be entered into the stack at the present SSP
location. Processing then performed from the fixed address 6FFAM, and is
returned to the command following the TRP command by a RTN command.

Address :

LDW $10, &H6000

I ADW 310, 318 — 6FFAH

TRP
STW 810, (IX + 30)
RTN
CAL ABC

AN 8§11, &H40

TRP
TRP

CANI (CANCEL INTERRUPT)

PURPOSE:
FORMAT:
EXAMPLE:

Cle'ars the hardware interrupt request latch which has the highest priority.
CANI
CANI

ATNI (RETURN FRCM INTERRUPT)

PURPOSE:

'FORMAT:
EXAMPLE:

Loads the system stack contents into the program counter (PC), returns to
the resulting address and adds 2 to the SSP. This command is used to return
from an interrupt handling routine.

RTNt
RTNI

185

PART 3
SAMPLE PROGRAMS

[

PART 3 SAMPLE PROGRAMS

Bit Shift Display

; ASSEMBLER PROG. "SHIFT"
ORG &H7000
START &H7000

DOTDI: EQU &HO022C
PRE IX,&K6202
PRE IY,&H6800
PRE IZ2,8B6201
LD $0,(12+0)

BUP
ST $0, (IX+0)

CAL DOTDI

RTN } JP DOTDI also O.K.

10 CLS

20 LOCATE 12,3:PRINT "AD-1990"
30 A$=INKEY$:IF A$="" THEN 30
40 CALL "SHIFT.EXE"

50 GOTO 30

EXECUTION: Bit shift left when key is pressed.

OPERATION: The above noted assembler source list is assembled, and a BASIC
program is executed.

. A

188

Subroulines for Reversed Dispiay

Subroutines for Reversed Display

ASSEMBLER PROG. "REV"
ORG &H7000
START &H7000
DOTDI: EQU &H022C
PRE IX,&H6201
LDW $0,&H600
LOOP: LD $2,(Ix+0)
INV $2
STI $2, (IX+0)
SBW . $0,8$30
IR NZ,L00P

CAL DOTDI }JP DOTD! also OK.
RTN

10 CLS

20 LOCATE 12,3:PRINT "AD-1990"
30 A$=INKEY$:IF A$="" THEN 30
40 CALL "REV.EXE"

50 GOTO 30

EXECUTION: Screen reversed when key is pressed.

OPERATION: The above noted assembler source list is assembled, and a BASIC
program is executed.

o

189

Sl

PART 4
MONITOR

PART 4 MONITOR

MONITOR MODE

Outline
The MONITOR mode can be used to view or change memory contents.

Entering and Exiting the MONITOR Mode
a) The MONITOR mode can be entered by executing the MON command while in the CAL

mode or BASIC mode.
b) Pressing the [key while in the MONITOR mode returns to the MENU mode, while press-

ing the @A key returns to the CAL mode.

Example:
CAL mode MONITOR mode

moNE T T T

[
I : | ;
| |

Al i]

Command Execution

B (BANK) : Switches the memory bank
D (DUMP): Memory content output

E (EDIT) : Memory content change

B: BANK SWITCH

PURPOSE: Sets (switches) the object bank for execution of the DUMP or EDIT
command.

EXPLANATION:
1. Switches between BANK 0 and BANK 1.

2. The initizalized setting is BANK 1,
EXAMPLE: Setting BANK 1 (from BANK Q)

H) (BJES 1B ™ 18

e-_ - e | B

Following (B]E3directly by &R without any further input returns to command
input stand by without switching the bank.

192

D: DUMP MEMORY

D: DUMP MEMORY

PURPOSE; Displays the memory contents.
FORMAT: D [display start address]

PARAMETERS: display start address: Must fall within the system area or machine lan-
guage area (80004 = display start address = 7FFEH).
EXPLANATION:
1. Executing D only without specifying start and end addresses displays 8 byles starting from
the address following the last dumped address (initial value = 0).
2. Executing D [< display start address >} displays 8 bytes starting from the specified address.

EXAMPLE: Display of memory contents from memeory address 7000H to 7008k,

107000
Mm)FT)(e)@Je)Zm | 7900 4B 45 4C 4C 4F 2) 11 01

E: EDIT MEMORY

PURPOSE: Changes the memory contents of the currently specified memory bank
{(RAM only).
FORMAT: E [start address]

EXPLANATION:. . ~

1. Executing E only without specifying the start address allows editing of the address follow-
ing the last address edited.

2. Values can be edited by using the 0 — 2 and A ~ F {including a ~ f) keys for input.

3. Pressing the [#d(space) key moves to the next address without changing the contents of
the currently displayed address.

4. Pressing the(es]) (backspace) key returns to the previous address without changing the con-
tents of the currently displayed address.

5. Pressing the &3 key exits the EDIT mode and returns to command input stand by.

EXAMPLE: Changing the contents of address 7002+ from 4C to 5A.

JE7000 |
(E)7)(e) ele)Zn lmae 48_ |
|
< JE7000
) 7008 48- d5- 40--

193

APPENDICES

dm e Tl

1
[N
Rl e i e

T T S ——

APPENDICES

CHARACTER CODE TABLE

High-order 4 bits —.

2l = BBl BLLEL EL G B E B & Bl 2ld=l 1=
szm...?.z- o E?“?ﬁznz_szzm_zn.znznAz o~ ~
w ﬁ MRS ERENERERERERERERRNE H

[S SIS gl By, Blg By ISy S g[8 4 18] 4 8]\ 8] /I8

HIRENE W o 2] = _W HNSNESEERERERERE
0 __?_Amwl.,}?.a._ ??1232.72l2»2b2ﬂ27”~/ﬂ.ﬂo?.

o [- d L o o =3 - o ™~ - Cxl w _“

=3 Y] P = e - i = I < = T - R T R S R ST TR TR E IR EI R S
L L b _T_...»lu. IR NS SRS IS S
ANEREN SN EREREREREREREREREREMENERE

L AR Ay Fe S e SRS Ha He Hn B e S a S Bl o2\ 12
R EREE RIS EEREREREREREREREREEERE
& n [Rt e s B Bk B b= I = R LS PN
o [RE[F BBl B E-BFE B VB ERENEELEL B

e H < jong 4 ~” -r -y w = o h -2 -— o~ o
o | IE] IEN1E] nE| 02|] 0EE B oE e w1

SRERE W HEERENERENERERERERERERE
7D...Q....risl...lulv1w1._n.lv..l..._.|4.||-.1|.u~u =

- e~ = = g o~ - - 2] b r~ o @ = _
© .Fafb—HchweM.mew.nmw...w.l.w.K.n.llmmWnHOH

2oLl B, B, Ll Tl Tl) el s e e,] e
< @_IA—“B—HCWD—MWE—II.F_]G—lH_Hl—IJ_“K—lL_7.M—IIN_UO_“

RN RS RO RERERE RS RERENENERERE

28 le) BLELBELE R ELELE R E =
o~ ” '-3"3# $3%3&3l3(‘.)‘*4+‘|4_‘.-4/.‘.
42w | Tl i | - - ~ |7 e e o
- [E=EERE BLE| | & B & E ERETECESE
o | lejpl-lab] bl Tld-falel sk 1o B3GRkl B =
»
||~ |nN|m|<t|w]jo|n|lolol<c|n|lo|o|w| L

119 $ 18pJ0-MOT

pecitied (indicated

* Nothing is output for character codes for a character or function is not s

by a blank cell in the table).
* Contro! codes are indicated b

y parentheses and are not displayed.

y can be displayed using the CHR$ function. .

, 898 and 8AH apear to be the same on the screen, but

nput directl

* Characters which cannot be i

* Because of display limitations, 884
are different when printed out.

* Character codes are hexadecimal values. 8AH shouid be represented as &H8A where &H

indicates hexadecimal notation, 8 is the low-order 4 bits

* Values in the lower right corner of each cell indi

ing character code.

, and A is the high-order 4 bits.

cate the decimal value of the correspond-

186

ERROR MESSAGE TABLE

ERROR MESCAGE TABLE

E;r:; Error message Meaning Correction
1 | OM error a} Insufficient memory or system{ a) Shorten program and check
over fiow. array dimensioning.
b) Erroneous CLEAR statement | b) Check CLEAR statement value.
specification. ¢) Use expansion RAM pack.
2 | SN error Erroneous command or state- a) Check spelling of commands.
ment format. b) Check program inpul.
3 | ST error String length exceeds 255 Sherten string to 255 characlers or
characters. less.
4 | TC error > Formula too complex, Divide formula into smaller sub- -
formulas
5 | BV error a) 11O buffer overfiow, a) Set RS-232C baud rate to lower
value or set XON/OFF.
b) Line length exceed 255 bytes | b) Keep lines 255 characters or
or 256 characters. less in length.
6 | NR error I/0 device not ready for a) Check connection and power
inputfoutput. switch of I/O device.
b) Load a floppy disk inte FDD.
7 | RW error a) Error generated in 1/O device | a) Check /O device.
operation.
b} LOAD of fite for which FL b) Erase (kill) loaded program.
error was generated al SAVE. NOTE: Repeated RW errors in-
dicate that object program was
not saved properly. Erase and
resave, if possible.
8 | BF error tmproper filename specification. | Check filename.
9 | BN error Improper file number specifi- Check file number.
cation.
10 | NF error Cannot find specified filename. | Recheck filename.
11 | LB error Low batteries in FDD. a) Replace batteries in FDD.
b) Use AC adaptor.
12 | FL error Disk space unavaitable for a) Erase unneeded files.
writing. b) Use a new disk.
13 | OV error Value exceeds allowable calcula-| Check values.
tion result or input range.
14 | MA error a) Mathematical error such as Check expressions and values.
division by zero.
b) Argument exceeds allowable
calculation range.

197

198

APPENDICES

-

E;r:; Error message Meaning Correction
15 | DD error Double declaration of identical ~ | Either erase previous afray or use
array. a different array name.
16 | BS error Subscript or parameter outside | a) Check subscripts.
of allowable range. b) Increase size of arrays.
17 | FC error a) Erroneous use of function or | a) Check argument values and
statement. statementis.
by lllegai command used in b} Check for statements that can
direct mode or program not be used in respeactive mode.
mode.
¢) lilegal command used in CAL | ¢} Check statements.
' mode.
d) Attempt to use undeclared d) Declare array using DIM
array statement.
18 | UL error a) Branch destination line num- | &) Check line numbers.
ber does not exist.
b} Input of statement without b} Always use line numbers in
line number in BASIC editing BASIC editing mode.
mode. ¢) Enter BASIC programming
mode.
19 | TM error a) Mismatch of variable type and| Check for iliegal numeric assign-
contents. ment to siring variables or string
b) Mismatch of READ statement | assignment to numeric variable.
variable and data.
c) Mismatch of INPUT # state-
ment variable and data.,
20 | RE error RESUME statement outside of Check RESUME statement location,
C error handling routine.
21 | PR error a) Attempt to write to password | Cancel password or write protect
or write-protected disk or file. | status.
b) Execution of command that
cannot be used with pass-
word protected files.
22 | DA error READ statement execulion when| Check READ and DATA
no data present. statements.)
23 | FO error No FOR for NEXT statement. Check for matching of FOR and
NEXT statements.
24 | NX error No NEXT for FOR statement. Check for matching of FOR and
NEXT statements.
25 | GS error Mismatch of GOSUB and Check for.matching of GOSUB and
RETURN statements. RETURN statements.
26 | FM error Unformatted or damaged disk. Reformat disk or use new disk.

LRROR MESSAGE TADLE

Error
code

Error message

Meaning

Correction

27

FD error

FIELD statement length exceeds
256 characters,

Ensure data length specified by
FIELD statement is 256 characlers
or iess.

28

OP error

a) Attempt to access unopened
file.

b) Attempt 1o open already open
file.

a) Execute OPEN statement.

b) CLOSE file and then reopen.

29

AM error

a) Attempt to use random ac-
cess for file opened for se-
quential access or vice versa.

b) Attempt to use outpul-related
command for device opened
for input or vice versa.

¢) Attempt to load a random file.

d) Attempt to use APPEND
QOPEN for BASIC or machine
language file.

e) Mismatched recorder baud
rate.

f) Attempt to execute machine
language file without stant
address.

a) Do not use random access for
sequential file and vice versa.

b) Ensure proper used of input-
related and output-related
commands.

¢) Random files cannot be loaded.

d) Do not use APPEND OPEN for
BASIC files or machine
language files.

e) Check MT baud rate.

fy Include start address.

30

FR error

Framing error detected by
RS-232C port.

Check RS-232C connection and
data transmission method.

31

PO error

Parity error or over run error de-
tected by RS-232C port.

a) Check RS-232C connection and
data transmission method.
b} Use slower baud rate.

32

DF error '

a) Undefined command sent to
FDD.
b) Abnormality in FDD.

a) Erroneous machine language
program

b) Disk contents may not be
retained.

?7? error

Undefined error.

Abnormal operation. Press RESET
and check memory contents. If ab-
normal, press NEW ALL.

199

APPENDICES

COMMAND/FUNCTION TABLE

COMMANDS
- CLEAR © | - SYSTEM © | - LIST e
- VARLIST © | - EDIT 4 | - DELETE ¢
- RUN # | - TRON/TROFF © | + END
- STOP - GOTO - GOSUB/RETURN
- ON GOTO - ON GOSUB -1F/THEN/ELSE
- FOR/NEXT * REM(") - LET <
- DATA’READ’RESTORE - INPUT - PRINT ©
- PRINT USING © | + LOCATE © | - ANGLE ©
- BEEP(ON/OFF) ©| +-CLS © | - DIM ©
- ERASE © ! - DRAW/DRAWC © | - MON ©
- CALL © | - ON ERROR GOTO - RESUME
- DEFCHR $ © | - PASS | - NEW o
- STAT © 1 - STAT CLEAR © | - POKE ©
INPUT/OUTPUT COMMANDS
- LLIST & | + LPRINT © | - LPRINT USING ©
- FORMAT © | -BSAVE © ! -BLOAD ©
~+OPEN - CLOSE © | +PRINT#
-INPUT#® |~ - SAVE ® | - LOAD &
-PUT/GET" - FIELD - RSET/LSET
- VERIFY © | - CHAIN ® | - MERGE ™
- LINEINPUT % - PRINT % USING ‘

& manual execution oniy ® manual or CAL mode execution
NOTE: ®& and © are not included for commands which would be meaningless in

manual execution.

200

SCIENTIFIC FUNCTIONS

COMMAND/FUNCTION TARLE

-CHRS$

* VAL
-LFFT#$
+ &H

- INPUT #
- POINT

+ SIN

- ASN

- HYP SIN
+HYP ASN
- EXP

+ SQR

INT
PI
TAB

« CNT
« SUMXY
- MEANX

SDY

+ LRA

EOX

* EQF
- LOF
- TIME $

.

- ASC
+MID§$

+ LEN

+ INKEY &
- DEG

- COS

- ACS

- HYP COS
- HYP ACS
- LOG

- ABS
FRAC

- RND

« FIX

- SUMX

» SUMX2
MEANY
- SDXN

- LRB

- EOY

- ERR

* REV

- DATE$

.

.

+STR§
- RIGHT &
-HEX §
- INPUT §
-DMS §

* TAN

- ATN

- HYP TAN
+HYP ATN
-LGT

+ SGN

- ROUND

- PEEK

- SUMY
+ SUMY2Z

+ SDYN
- COR

* ERL
* NORM

5DX

201

202

APPENDICES

RESERVED WORD LIST

(Al ABS BEDIT LGT Pl SUMY 2
ACS ELSE L INE POINT SYSTEM
AND END LIST POKE
ANGLE EOF LLIST PRINT |(T)TAB
APPEND EOX LOAD PUT TAN
AS EOY LOCATE THEN
ASC ERASE LOF (RJREAD TIMES
ASN ERL LOG REM TO
ATN ERR LPRINT gggﬂxi TROFF

ERROR LRA RETURN TRON

(B)]BEEP EXP LRB REV
BLOAD LSET RIGHTS U US ING
BSAVE |FJFIELD RND

FIX M) MEANX ROUND V] VAL

CElcAaLL FOR MEANY RSET VARLIST
CHAIN FORMAT MERGE RUN VERIFY
CHR$ FRAC MIDS
CLEAR MOD (8] SAVE (X} XOR
CLOSE |BGET MON SDX
cLS GOSUB SDXN
CNT GOTO (N] NEW SDY
COR NEXT SDYN
COS. |BHEXS NORM SGN

: HYP NOT SIN

OlpATA SQR
DATES |JIF [0) OFF STAT
DEF INKEYS$ | - ON STEP
DEG INPUT OPEN STOP
DELETE INT OR STRS$
DIM ouT SUMX
DMS $ DLEFTS SUMX 2
DRAW LEN (P) PASS SUMXY
DRAWC LET PEEK SUMY

MEMORY MAP

MEMORY MAP

Memory Free Areas

The HD61700 has free areas from addresses 00000+ through 3FFFFH, (18 external address-
es and B data addresses), while the free area of the computer is located at the addresses
illustrated below.

0000x
Internal ROM
0BFFH
Free
6000
RAM
TFFFa
(RAM)
(RAM)
ROM
(RAM)
(RAM)
FFFFy
Bank #0 Bank #1

The internal ROM indicated in the memory map is the HD61700 ROM {addresses Ox ~
BFFH, 3072 x 16 bits).

203

APPENDICES

MNEMONIC TABLE

= =
N} -—
afn =
1)
o|© =
~ =
lm — o~ P T e T e T e e R T e R T I Y T B B} — -4
z o w h o O W W W W WD W0 W0 W W WD WL W0 W O D W
al ¢ — e e i i i a i a T T TE B T B - —
m.l
b=l
S-MrDrD665666666666666666333333333333333333666666
'
21t
»ru..vwN24442444..._.d._lu_.4444444.d_..d..4334422222222222222222224
ol
£z
mm2222222222222222222211111111111111;1111222222
= | u
2
V..33333333333333333333222222222222222222333333
[84]
M2]89289ABABOOI01232367EFCCEEEFFF465677656772
H01224662266122662266222211111111111.”..115-35558
OO O e OO O O e O D O A DO DO 00 00 0000 A0 OO0 O
.W|1Oonu100]111000001111111100111111011111111111
w?_00000000000000000000111111111111111111111110
MBUG]IOIII11100000000000111111}1]1000000000000
rMﬂ01000000000l00000000000011111111111111111110
wu.b001101]1111011111111111100000000000000000000
Sl © © O e 00 O 00 MO O+ O 00 0O Do 0O 0 C oo 0Cc oo QO MmrMAMaAA~ o
~lo O 0O Cc 0 o O oS dO0 o 0000 o000 o0 00000 0o o O oo o o0 o o000 C
P -~ o~
- — A - —~ -~ —
< o sz v EE ®w e 3PP ET
o 4 41 4+ 3 + o+ 4 <
2 ~ M A T~ o w » » @ “

@ e SN e e RS e AN N R S IS R e i R S.S.A.SSmmn.nnS.
o AR i B = e S e R R S e e L a o = wl o s a< % oee
P e e T e . L e . T L o N 7 7) < 7 o <l <€ td
ﬁDu.SSS3SSS$$SS$S$$$$$$S US g (s s s QR i 5 D S DS s

e e e O e e e R il ol ol el i B B S Sl R S S S B el
cocoQcOoc00 A fiERRRRRFEIZIOAOLAN OOV ANDLEGODOOWLNGNNNWGONA
4 14200 dddnmmntnnmann oLl O0O0008 0000 00 n A 0 e 0]

g

m -
£ — — N o wnwD A0 B B B
MD a = = oo A B bl A [(]
M_L) 0 0 O I R C & oo .

204

MNEMONIC TADLE

,) Operation code Machine cyclel State | Flags
Mnemonie| Operation o= e Hex | Byte e T T € L7 U
LDW § (%) r0010001 91| 3 | 2|5 |6 {14 o
LDW $(IX+$)i1 0101 000/A8| 3 {2 | 5|6 |14
LDW §(0Z+%)/1 0101 001|A%| 3 | 2|5 | 6 |14
LDW §.m 11010001|Dt| 4 | 3|51 9 |14
LDIW [LDIW $,(IX£$) |1 01 0 1 01 0/AA| 3 | 2 (5 | 6 |14
LDIW §.(1Z+$) |1 010101 1/AB| 3 | 2 | 5 | 6 |14
STW |STW $.(X+$)|1 01000 00|AO0| 3 | 2 {5 {6 [14
| STW §,(1Z+$}|1 01 00001|A1| 3 | 2|5 |6 |14
STW $.(3$) 10010000 90| 312|516 14
STIW (STIW $.(UX+$) {1 010001 0/Aa2] 3 | 2 | 4 |6 |14
STIW $.(1Z+%) [1 010001 1|A3| 3| 2| 4|6 |14
PHSW |PHSW § *l1to1o00110/a6] 2| 1|4 | 312
PHUW { PHUW & 10100111/A7] 21143 |12
PPSW |PPSW § 10101110/AEj 2 {1 |5 (3|14
PPUW |PPUW § 10101111|/AF| 2 | 1|5 | 3 |14
GRE |GRE IX,$ 10011110{9E| 2 | 1|4] 311
GRE 1Y, $ 1001 1110[/9E| 2114 | 3]|11
GRE 12,8 10011110|%E| 2 {14 3|11
GRE US, $ 10011110/9E| 2 | 1|4] 3|11
GRE SS,$ 10611111|9F| 2| 1141311
GRE KY, $ 100111111|9Fj 2114 i3/|11
PRE |PRE IX,$ 10010110/96| 2 |1 (4] 3|11
PRE IY.$ 10010110{96| 2 | 1| 41] 3111
PRE 1Z.§ 10010110[/96{ 2! 1] 4|3 |11
PRE US,$ 10010110/96| 2 1|43][11
PRE SS,$ 100101 11/97 2| 1|41 3 |11
PRE IX,m 11010110|/D6! 4 | 3149 |11
PRE IYm - 11010110/D6| 4 3 4 9 |11
PRE 1Z,m 11010110{D6| 4 | 3| 4|9 11
PRE US,m 11010110|/D6| 4 | 3! 4|9 |11
PRE SS.m 11010111/D7] 4§34 | 911
AD AD 8.8 oooo01000[08| 3 212|616 MMMM
AD (X%+$1% Joo111100/3C! 3 |21 4|6 |[12[MMMN
AD(IZ+$)% (001111 01/3D{ 3 | 2 (4| 6 |[12/MMMM
AD S 0100100048 3 | 212 616 IMMMM
AD (IX+n),8 01111100|/7C| 3 |2 | 4|6 [12/MMMM
AD (I1Z+n),$ {01111101|7D| 3 | 2 | 4 [6 {12|/MMMM
{ADB |ADB §,8 ocooot1o010/loal3 2|2 |6 |6 [MMMM
ADB $.a 01001010/4A| 3 | 2|2 |66 |MMMM
ADC |ADC s,$ p0000O0O0CO|00! 3 | 2| 216 |6 MMMM
ADC (IXx$),8 loo0111000(38| 3 | 2 | 4| 6 |12/MMMM
ADC IZ+$)% [0 011100139 3 | 2|4 |6 |12IMMMM
ADC $.n 0100606000 40] 3 2 2 6 6 IMMMM
ADC (IX#n),$ f0 111100078 3 [2| 4|6 (12/MMMM

205

APPENDICES

5 ZEZEZEZEZE:22EZ23ZFEEZ2ZZ2:22=2:5325:s S35 s=s5==Ss5:s%
B2 2 22222 =2 5552 222225222223 =2=2=2=ss=
1) .
glelEe e ettt n EEEEFEEESEESE S SEEOCOCOESEESEESEE OO0 o

NIE ZEEZFEEZEEEEEEEZEEEEEEEEEEEEEEEEEESSsEEREErEEEEEesS

mz o™ o™ NN o™ 0D 00 e T o e e o e

H WOWw S W W W DWW W W oW T3 o w0 oW 0 PRt R TRy
@ ¥ — - — - — — - i e T T T e T e T e T e T G G S
o -
nc\wh

msrns wow w w (Yo ¥ sl 0w O W W WL W w0 W W D W W 0 W

w
R
=i oo™
| =
Sl
AR
s | w

@
;Ul!33
m

w VU0l oadbLoldhofeBRBL~<<ALILE-ESo0OAQ« oo w0wiho
H7040404040404033477040334770404BBBBBBB888838

n.u‘nU0000000011110110111101101111110001000000011
=]

n31.1.1...0nU1..10....U11001._1.1..1.!...1-1101101111001111011101010
o

wﬁ.I.0000000000000110110001101100000110011000000
nrur;.l.00000000000001101100011011000.0011001}1000000
m.ro.l.o1.0.lnUT.o.l01010001110100011101010000000000000

_.J00000000000000000000000000000001111111111.1.11

@ » [7

c — - s ® # - — L] (23

@ | = o~ o ¥ # = 2 7 © “ @
T |# @ “ ®w T Ho4H o4 SNV ;P P,

B Ne o - % o x5 o %8 4o HHR 2® oy GMne 8 KNS Nee v .0

er\-.SS..S$.m$$.XZmXZ$$$UU$GU..n.S$S((VV R I
8 o w & » & % w o= s = @ bk LEE R, F

QL Lo Lo Lo mmooULLOLL QLUEEFENLLODELDEOUEDL
DN.N.NhuﬂtAwAWRRRRBBBBBBBBBBBBBBRRRRDDDDDDDNNAARR
CE AL L L LLZ L 200000 NHNNNNNARANDNAANKHKKKKADDLd T cdZZ 00

%] " 3

g N E o= - -

£ N © O Q m O v E m o EOBEQEOQ

& md . < ‘An 0= 5+ m o m s o [w] a0 P A v A

= < - < 2z, o < wny) n - - - < - < % Z 2 C 0

206

MNEMONIC TABLE

gMnemonic Operation Operation code Hex rByle lMacnlze—cy—m?i;-——S-lé-lg—--j __F__I_a_gs l
165432 130 \ ?Felcr‘..“'“'“‘F""""'”".Z,,E,,L,Z,,“,zi
SBW SBW &8 1000100 1(89 3 2 4 6 !11‘[.\1 MMM
SBW (IXx$%). (1 011111 0/BE{ 3 2 6 6 18 M MMM
SBW (1Z+%),8)1 011111 1/BF| 3 2 6 6 18 M MMM
SBBW |SBBW §.§ 10001 011{8B 3 2 6 6 18 [MMMM
SBCW |SBCW 8 & 1000000 1|81 3 2 4 6 11 MM MM
SBCW (IX+§)8% (1 01 1101O0BA|[3 2 6 6 18|/M MMM
SBCW {IZ+%)2% (1 01 110111 BB| 3 2 6 6 18 /MMMM
XRW |XRW 8.8 10001 31 1/8F} 3 2 4 6 |11 (M 0 MM
XRCW [XRCW §.% 100001 11{87]| 3 2 4 6 (11 (M O MM
BID BID % 00011 000[18] 2 1 2 3 6 MM MM
BiU BIU & 00011000(18] 2 1 2 3 6 MMMM
ROD ROD § 10 001100018 2 1 2 3 6 MMMM
ROU ROU 3% cco0o1100018] 2 1 2 3 6 MMMM
bDID DID & 0011101 0[1A]| 2 1 2 3 6 M OMODO
DIU DIU & 60011 010[1A] 2 1 2 3 6 M0 0M
CMP CMP § 00011011 1B| 2 1 2 3 6 MMMM
INV INV 8 0001101 11B)| 2 1 2 3 6 M1 MM
BIDW [BIDW § 1001100008 2 1 4 3 |11 MMMM
BIUW |BIUW % 10011000|958| 2 1 4 3 |11 MMMM
RODW [RODW § 10011000158 2 1 4 3 (11 MMMM
ROUW [|ROUW 3 1001100098 2 1 4 3 11 MMMM
DIDW DIDW & 10011010 9A!"2 1 4 3 11 MOMM
DIUW [DIUW § 1001101 0|9%5A; 2 1 4 3 11 /M0 MM
BYDW |BYDW § 10011010 8%5A(| 2 1 5 3 11/M 0 MM
BYUW |BYUW § 10011010 9%A| 2 1 4 3 (11 Mo MM
CMPW |CMPW 5 1001101 1|9B| 2 1 4 3 |11 MMMM
INVW [INVW § 11061101 19B 2 1 4 3 |11 | M1 MM

JP JP Zm o~ 100611000030 3 2 2 6 6

JPNC.m 0011000131 3 2 2 6 6

JP LZm 0011001¢0¢|32; 3 2 2 6 6

JP UZm 0011001133 3 2 2 6 6

JP NZm 00110610034/ 3 2 2 6 6

JP Cm 0011010 1135; 3 2 2 6 6

JP m 00110111137 3 2 2 6 6

JR JR Z,=P i1 0110000/BO| 2 1 2 3 6

JR NC, =P 10110001 B1 2 1 2 3 6

JRLZ =P 10110010/B2| 2 1 2 3 6

JR UZ, %P 10110011}B3| 2 1 2 3 6

JR NZ, =P 10110100 B4 2 1 2 3 6

JR C, =P 101101 061(B5 2 1 2 3 6

JR P 1 ¢1101111B7} 2 1 2 3 6

CAL CAL Zm 613110000701} 3 2 4 6 [12

CAL NCm 0111000171 3 2 4 6 [12

CAL LZm 0111001072 3 2 4 6 |12

207

208

APPENDICES

Mremonic Cperation W Operation code Hex |Byle State Flags
: 7 54 3 2 1 0 Felch |Lascuron | Foltch [fuscuon) 7 C 7 UZ
CAL UZ.m 0111001 1|73] 3| 2] 4] 6 12 |
CAL NZ.m 01 110100[74]| 3 2 4 6 |12
CAL Cm 01110610175 3 2 4 6 112
CAL m 6111011 1|77]| 3 2 4 6 |12
RTN |RTN Z 11110000|F0} 1 0 5 0 (14
RTN NC 11 110001|F1]| 1 0 5 0 |14
RTN LZ 11351001 ¢|F2| 1 0 5 0 |14
RTN UZ 1111001 1{F3]| 1 0 5 0 |14
RTN NZ 11 110100|F4] 1 0 5 0 (14
RTN C 11110101[{F5/| 1 0 5 0 |14
RTN l11110111|F7} 1 0 5 0 |14
BDN {BDN 110110011 Dol 1 0 |2a+2| 0 |6a+6
BUP |BUP 11011000(D8]| 1 0 {2a+2 0 i6a+6
SDN |SDN § 11011101[{DD| 2 1 |2a+2| 3 (6a+6lM M M M
SDN n 01011101|5D]| 2 1 [2a+2] 3 |fa+6{M M M M
SUP |SUP § 11011100{DC]| 2 1 [2a+2| 3 |6a+6M M M M
SUP n 01 011100[5C]| 2 ! {2a+2| 3 |6a+B|M M M M
NOP |[NOP 11111000{F8{ 1 4] 2 0 6
CLT |CLT 11111001[Fg| 1 0 2] 6
FST |FST 1111101 0/FA]| 1 0 2 0| 6
SLwW |SLW 1111101 1|FB]| 1 0 2 0 6
CANI |CANI 11111100/FC| 1 0 2 0 6
RTNI |RTNI 111111011/FD]| 1 0 5 0 |14
OFF |OFF 11111110, FE]| 1 0 2 0 6
TRP |TRP 1111111 1/FF]| 1 0 4 D (12

n: 8-bit immédiate data

m: 16-bit
p: 7-bit

immediate data
immediate data

a : Number of bytes processed.

SECONDARY OPERATION COMMANDS

f

Second operation code i

‘Mnemonic Operation
! 765¢321¢0
GFL i 0
GPO 00
GST GST PE 0 0
PD 01
UA 11
A 00
IE 01
™ 11
PST PST RE 00
PD 01
UA 11
1A 00
IE 01
GRE GRE IX ¢ 0
Iy 01
1Z 10
Us 11 ’
SS 00
KY 11
PRE PRE IX 090
Iy 01
1Z 10
us 11
S§ 00
BID 10
BIU - 11
ROD 00
ROU 01
DID 00
DIU 01
CMP 00
INV 10
BIDW 10
BiUW i1
RODW 00
ROUW 01
DIDW 00
DIUW 01
BYDW 10
BYUW I'1
CMPW 00
INVW 160

SECONDARY OPERATION COMMANDS

209

BASIC
A F
&H .. 83 FIELD 103
ABSo 70 FIX o 73
ANGLE.. o 63 FORMAT " 108
ASC [76 FOR~TO~STEP~NEXT ... 37
ASN/ACS/ATN 65 FRAC 73
B G
BEEP_ 50 GET ... 106
BLOAD.......... "~ 110 GOSUB 32
BSAVE ... 109 GOTO.......... . 31
c H
CALL_ 56 HEXS o ... 82
CHAIN 113 HYPASNIHYPACSHYPATN. 67
CHRS 76 HYPSIN'HYPCOS/HYPTAN 66
CLEAR.. 22
CLOSE..... 97 |
CLSo 48 IF ~THEN ~ ELSEAF ~ GOTO - ELSE 15
CNT 88
COR................~ 91 INKEYS. 52
Gos | 4 INPUT. 51
: INPUT# 100
5 o INPUTS.. 53
. INT.. o 72
DATA.................... 40
DATES 0 86 L
DEFCHRS 49 LEFTS........... ... 81
DEG....... ... 84 = o
DELETE................ " 24 oo
DIM, . 2 LET............ 0 39
LINE INPUT#. ... 101
omsSs.... ... e 84 LST... | i o
DRAWDRAWC " 58 (ST, -
c LOAD ... 112
LOCATE.................~" 47
EDIT. ... 26 LOF ... 107
END0 29 LOGILGT ... 69
EOF. 102 LPRINT. 94
EOX ..o 92 LPRINT USING....... ... 95
EOY ... o 92 LRA......... 00 91
ERASE..................."" 55 LRB o1
ERL............0.00n 62 LSET ... 105
ERR............. .o 62
EXP ... 68

210

M
MEANX. ..o 90
MEANY ... o 90
MERGE .. .\'ovieeieeeenn 114
MIDS . oo 79
MON. .o 24
N

NEW ..ottt 21
NORM ..., 45
o]

ON ERROR GOTO............... 60
ON ~ GOSUB.......ccovvvnnn... 35
ON ~ GOTO......veeeenn 34
ol = P 96
P

PASS ..., 20
PEEK ..o 56
Pl e 74
POINT - 59
POKE........... e 57
PRINT. ..ot 43
PRINT USING. 46
PRINT# . .oetneieereenes 98
PRINT# USING................. 99
PUT o 106
R

READ ...\ttt 41
REM{") e oeieeeeeeeeeeinee 38
RESTORE ..., 42
RESUMEoveeeeiennn. 61
RETURN ..ot eeeen s 33
REV . ottt 45
RIGHTS oo 80
BND . e 75
ROUND ... 74
RSET et 104

WOEX

INGEX

ASSEMBLER
A I
AD oo 138 INV .o 164
ADB ... 141 INVW . 169
ADBW. ... 154
ADC ... 142 J
ADCW 155
ADW ... 152 j: """"""""""""""" :;;
AN 145 Tt
ANC ... 148 L
ANCW ... 159
ANW . .. 157 LDV oo 127
LDIW o 133
B LDW .o 132
BON ..o 180 N
BID ..o 162
BIDW ... 166 NA o 146
BIU .o 162 NAC . .o 149
BIUW ..o 166 NACW ..., 159
BUP ..o 179 NAW . ..o 157
BYDW. ..o 169 NOP . . 184
BYUW ..o 168
0
c OFF oo 184
CAL ..o 175 OR oo 146
CANI. ..o 185 ORC ..o 149
CLT........... e 184 ORCW ..o \o 159
CMP . 164 ORW. ... 158
CMPW ... o 170
p
D PEL. oo 130
DID ..o 163 PHS © oo 129
DIDW .o 168 PHSW. ..o, 136
DIU . oo 163 PHU .o 130
DIUW ..o 167 PHUW ..o 136
PPS o 129
F PPSW. ..o 135
PPU .o 129
FST . 184 PPUW . e (38
G PRE . o\ 137
PST oo 131
GFL ..o 130
GPO 130
GRE ... 136
GST s 131

212

INDEX

R

ROD ... 161
RODW 165
ROU ... 161
ROUW 165
BTN . 177
BINI. ..o 185
S

1 140
SBB ... 142
SBBW.... 154
SBC ... 144
SBCW. oo 156
SBW., 153
SDN . . 183
SLW . 184
ST e 128
STL. oo 128
STIW .. 135
STW 134
SUP ... 182
T

TRP . 185
X -

XR oo 147
XRC 150
XRCW ... 160
XBRW .o 158

213

